Math, asked by kenny80, 9 months ago

if (2x+y=3 and xy=1 then find the value of (x+y)^x-y.... plz help me brainly
360

Answers

Answered by Hydrolucky
0

Answer:

1

Step-by-step explanation:

2x+y=3

y=3-2x

then in 2nd equation put the value of y and solve

x=1 y=1

then put the value of xand y and u will get ans

Answered by Anonymous
23

Answer:

\sf{The \ value \ of \ (x+y)^{x-y} \ is \ (\frac{5}{2})^{\frac{-3}{2}}}

Given:

\sf{The \ given \ equations \ are \ 2x+y=3}

\sf{and xy=1}

To find:

\sf{The \ value \ of \ (x+y)^{x-y}.}

Solution:

\sf{2x+y=3...(1)}

\sf{xy=1...(2)}

\sf{From \ equation(2), \ we \ get}

\sf{xy=1}

\sf{\therefore{y=\dfrac{1}{x}}}

\sf{Substitute \ y=\dfrac{1}{x} \ in \ equation(1), \ we \ get}

\sf{2x+\dfrac{1}{x}=3}

\sf{Multiply \ throughout \ by \ x, \ we \ get}

\sf{2x^{2}+1=3x}

\sf{\therefore{2x^{2}-3x+1=0}}

\sf{\therefore{2x^{2}-2x-x+1=0}}

\sf{\therefore{2x(x-1)-1(x-1)=0}}

\sf{\therefore{(2x-1)(x-1)=0}}

\sf{\therefore{x=\dfrac{1}{2} \ or \ x=1}}

\sf{When \ x=\dfrac{1}{2}}

\sf{Substitute \ x=\dfrac{1}{2} \ in \ equation(2), \ we \ get}

\sf{(\frac{1}{2})y=1}

\sf{\implies{y=2}}

\sf{When \ x=1}

\sf{Substitute \ x=1 \ in \ equation(1), \ we \ get}

\sf{(1)y=1}

\sf{\implies{y=1}}

\sf{Considering \ x=\dfrac{1}{2} \ and \ y=2}

\sf{\leadsto{(\dfrac{1}{2}+2)^{\frac{1}{2}-2}}}

\sf{\leadsto{(\frac{5}{2})^{\frac{-3}{2}}}}

\sf{Considering \ x=1 \ and \ y=1}

\sf{\leadsto{(1+1)^{1-1}}}

\sf{\leadsto{2^{0}}}

\sf{\leadsto{1}}

\sf\purple{\tt{\therefore{The \ value \ of \ (x+y)^{x-y} \ is \ (\frac{5}{2})^{\frac{-3}{2}}}}}

\sf\purple{\tt{or \ 1.}}

Similar questions