Math, asked by alphyrose1204, 9 months ago

If 2y = [cot⁻¹(√3 cos x + sin x)/(cos x - √3 sin x)]², x ∈ (0, π/2) then dy/dx
is equal to
(A) (π/6) - x
(B) (π/3) - x
(C) x - (π/6)
(D) 2x
- (π/3)

Answers

Answered by anshi60
17

\huge{\blue{\boxed{\boxed{\boxed{\pink{\underline{\underline{\mathfrak{\red{♡ĂnSwer♡}}}}}}}}}}

2y = ( \cot {}^{ - 1} ( \frac{ \sqrt{3}  \cos(x)  +  \sin(x) }{ \cos(x)  -  \sqrt{3}   \sin(x) } ) ) {}^{2}

2y = ( \cot {}^{ - 1} ( \frac{ \sqrt{3}   + \tan(x) }{1  -   \sqrt{3}  \tan(x) } ))  {}^{2}

2y =  (\cot {}^{ - 1} ( \frac{ \tan( \frac{\pi}{3} )  +  \tan(x)  }{1   -  \tan( \frac{\pi}{3} ) \tan(x)  } ) ) {}^{2}

2y = ( \cot {}^{ - 1} (  \tan( \frac{\pi}{3} + x )   ) {}^{2}

we know that

tan⁻¹x + cot⁻¹x = π/2

___________________

then ,

2y = ( \frac{\pi}{2 }  -  \tan {}^{ - 1} ( \tan( \frac{\pi}{3} + x ) ) ) {}^{2}

2y = ( \frac{\pi}{2}  -  \frac{\pi}{3}   -  x) {}^{2}

2y = ( \frac{\pi}{6}   -  x) {}^{2}

2y =  \frac{\pi {}^{2} }{36}  + x {}^{2}   -  \frac{\pi \: x}{3}

now differinate with respect to x

2 \times  \frac{dy}{dx}  = 2x  -  \frac{\pi}{ 3}

 \frac{dy}{dx}  =  x - \frac{\pi}{6}

correct option c)

Answered by bandnashukla999
3

2y=(cot

−1

(

cos(x)−

3

sin(x)

3

cos(x)+sin(x)

))

2

2y = ( \cot {}^{ - 1} ( \frac{ \sqrt{3} + \tan(x) }{1 - \sqrt{3} \tan(x) } )) {}^{2}2y=(cot

−1

(

1−

3

tan(x)

3

+tan(x)

))

2

2y = (\cot {}^{ - 1} ( \frac{ \tan( \frac{\pi}{3} ) + \tan(x) }{1 - \tan( \frac{\pi}{3} ) \tan(x) } ) ) {}^{2}2y=(cot

−1

(

1−tan(

3

π

)tan(x)

tan(

3

π

)+tan(x)

))

2

2y = ( \cot {}^{ - 1} ( \tan( \frac{\pi}{3} + x ) ) {}^{2}2y=(cot

−1

(tan(

3

π

+x))

2

we know that

tan⁻¹x + cot⁻¹x = π/2

___________________

then ,

2y = ( \frac{\pi}{2 } - \tan {}^{ - 1} ( \tan( \frac{\pi}{3} + x ) ) ) {}^{2}2y=(

2

π

−tan

−1

(tan(

3

π

+x)))

2

2y = ( \frac{\pi}{2} - \frac{\pi}{3} - x) {}^{2}2y=(

2

π

3

π

−x)

2

2y = ( \frac{\pi}{6} - x) {}^{2}2y=(

6

π

−x)

2

2y = \frac{\pi {}^{2} }{36} + x {}^{2} - \frac{\pi \: x}{3}2y=

36

π

2

+x

2

3

πx

now differinate with respect to x

2 \times \frac{dy}{dx} = 2x - \frac{\pi}{ 3}2×

dx

dy

=2x−

3

π

\frac{dy}{dx} = x - \frac{\pi}{6}

dx

dy

=x−

6

π

correct option c)

Similar questions