If 2y = [cot⁻¹(√3 cos x + sin x)/(cos x - √3 sin x)]², x ∈ (0, π/2) then dy/dx
is equal to
(A) (π/6) - x
(B) (π/3) - x
(C) x - (π/6)
(D) 2x
- (π/3)
Answers
we know that
tan⁻¹x + cot⁻¹x = π/2
___________________
then ,
now differinate with respect to x
correct option c)
2y=(cot
−1
(
cos(x)−
3
sin(x)
3
cos(x)+sin(x)
))
2
2y = ( \cot {}^{ - 1} ( \frac{ \sqrt{3} + \tan(x) }{1 - \sqrt{3} \tan(x) } )) {}^{2}2y=(cot
−1
(
1−
3
tan(x)
3
+tan(x)
))
2
2y = (\cot {}^{ - 1} ( \frac{ \tan( \frac{\pi}{3} ) + \tan(x) }{1 - \tan( \frac{\pi}{3} ) \tan(x) } ) ) {}^{2}2y=(cot
−1
(
1−tan(
3
π
)tan(x)
tan(
3
π
)+tan(x)
))
2
2y = ( \cot {}^{ - 1} ( \tan( \frac{\pi}{3} + x ) ) {}^{2}2y=(cot
−1
(tan(
3
π
+x))
2
we know that
tan⁻¹x + cot⁻¹x = π/2
___________________
then ,
2y = ( \frac{\pi}{2 } - \tan {}^{ - 1} ( \tan( \frac{\pi}{3} + x ) ) ) {}^{2}2y=(
2
π
−tan
−1
(tan(
3
π
+x)))
2
2y = ( \frac{\pi}{2} - \frac{\pi}{3} - x) {}^{2}2y=(
2
π
−
3
π
−x)
2
2y = ( \frac{\pi}{6} - x) {}^{2}2y=(
6
π
−x)
2
2y = \frac{\pi {}^{2} }{36} + x {}^{2} - \frac{\pi \: x}{3}2y=
36
π
2
+x
2
−
3
πx
now differinate with respect to x
2 \times \frac{dy}{dx} = 2x - \frac{\pi}{ 3}2×
dx
dy
=2x−
3
π
\frac{dy}{dx} = x - \frac{\pi}{6}
dx
dy
=x−
6
π
correct option c)