Math, asked by navdeep2177, 3 months ago

if 2y=x(1+dy/dx) show that d2y/ dx2 is constant​

Answers

Answered by shadowsabers03
25

Given,

\longrightarrow2y=x\left(1+\dfrac{dy}{dx}\right)

\longrightarrow\dfrac{2y}{x}=1+\dfrac{dy}{dx}

\longrightarrow\dfrac{dy}{dx}=\dfrac{2y}{x}-1\quad\quad\dots(1)

Differentiating,

\longrightarrow\dfrac{d}{dx}\left(\dfrac{dy}{dx}\right)=\dfrac{d}{dx}\left(\dfrac{2y}{x}-1\right)

\longrightarrow\dfrac{d^2y}{dx^2}=\dfrac{2x\cdot\dfrac{dy}{dx}-2y}{x^2}

From (1),

\longrightarrow\dfrac{d^2y}{dx^2}=\dfrac{2x\left(\dfrac{2y}{x}-1\right)-2y}{x^2}

\longrightarrow\dfrac{d^2y}{dx^2}=\dfrac{4y-2x-2y}{x^2}

\longrightarrow\dfrac{d^2y}{dx^2}=\dfrac{2(y-x)}{x^2}\quad\quad\dots(2)

But we can rewrite (1) as,

\longrightarrow\dfrac{dy}{dx}-\dfrac{2y}{x}=-1

We are having a first order linear differential equation. So,

  • P(x)=-\dfrac{2}{x}
  • Q(x)=-1

Then integrating factor,

\longrightarrow IF=e^{\int P(x)\ dx}

\longrightarrow IF=e^{-2\int\frac{1}{x}\ dx}

\longrightarrow IF=e^{-2\log|x|}

\longrightarrow IF=\dfrac{1}{x^2}

Then, the solution will be,

\displaystyle\longrightarrow y\cdot IF=\int Q(x)\cdot IF\ dx

\displaystyle\longrightarrow\dfrac{y}{x^2}=-\int\dfrac{1}{x^2}\ dx

\displaystyle\longrightarrow\dfrac{y}{x^2}=\dfrac{1}{x}+C

\displaystyle\longrightarrow\dfrac{y}{x^2}-\dfrac{1}{x}=C

\displaystyle\longrightarrow\dfrac{y-x}{x^2}=C

Then (2) becomes,

\longrightarrow\underline{\underline{\dfrac{d^2y}{dx^2}=2C}}

Hence Proved that \dfrac{d^2y}{dx^2} is a constant.

Similar questions