Math, asked by adya8821, 10 months ago

if ✓3 = 1.732then the value of root under 2-✓3 by 2+✓3 ​

Answers

Answered by BrainlyConqueror0901
7

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\frac{2 -  \sqrt{ 3} }{2 +  \sqrt{ 3} }  = 0.072}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt: \implies  \sqrt{3}  = 1.732 \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies  \frac{2 -  \sqrt{3} }{2 +  \sqrt{3} }  =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  \frac{2 -  \sqrt{3} }{2 +  \sqrt{3} }  \\  \\  \tt \circ \:Multiplying \:  \frac{ 2 - \sqrt{3} }{2 -  \sqrt{3} }  \\  \\ \tt:  \implies  \frac{2 -  \sqrt{3} }{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\ \tt:  \implies  \frac{(2 -  \sqrt{3} )(2 -  \sqrt{3}) }{(2 +  \sqrt{3} )(2 -  \sqrt{3} )}  \\  \\  \tt \circ \:  {a}^{2} -  {b}^{2}   = (a +b)(a -b)  \\ \tt:  \implies  \frac{ (2 -  \sqrt{3})^{2}  }{ {2}^{2} -  {( \sqrt{3} })^{2}  }  \\  \\ \tt:  \implies  \frac{(2 -  \sqrt{3})^{2}  }{4 - 3}  \\   \\  \tt \circ \:  {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2} - 2ab  \\ \tt:  \implies   {2}^{2}  +  { (\sqrt{ 3} )}^{2}  - 2 \times 2 \times  \sqrt{3}  \\  \\ \tt:  \implies 4 + 3 - 4 \sqrt{3}  \\  \\ \tt:  \implies 7  - 4 \times 1.732 \\  \\ \tt:  \implies 7 - 6.928 \\  \\  \green{\tt:  \implies 0.072} \\  \\  \green{\tt \therefore  \frac{2 -  \sqrt{ 3} }{2 +  \sqrt{ 3} }  = 0.072}

Answered by Anonymous
5

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{The \ value \ of \ \frac{2-\sqrt3}{2+\sqrt3} \ is \ 0.072}

\sf\orange{Given:}

\sf{\implies{\sqrt3=1.732}}

\sf\pink{To \ find:}

\sf{The \ value \ of \ \frac{2-\sqrt3}{2+\sqrt3}}

\sf\green{\underline{\underline{Solution:}}}

\sf{\implies{\frac{2-\sqrt3}{2+\sqrt3}}}

\sf{Rationalising \ the \ denominator}

\sf{\implies{\frac{(2-\sqrt3)(2-\sqrt3)}{(2+\sqrt3)(2-\sqrt3)}}}

\sf{By \ identity}

\sf{a^{2}-b^{2}=(a+b)(a-b)}

\sf{\implies{\frac{(2-\sqrt3)^{2}}{2^{2}-\sqrt3^{2}}}}

\sf{\implies{\frac{(2-\sqrt3)^{2}}{4-3}}}

\sf{\implies{\frac{(2-\sqrt3)^{2}}{1}}}

\sf{\implies{(2-\sqrt3)^{2}}}

\sf{By \ identity}

\sf{(a-b)^{2}=a^{2}-2ab+b^{2}}

\sf{\implies{(2-\sqrt3)^{2}=2^{2}-2(2)(\sqrt3)+\sqrt3^{2}}}

\sf{\implies{=4-4\sqrt3+3}}

\sf{\implies{=7-4(1.732}}

\sf{\implies{=7- 6.928}}

\sf{\implies{=0.072}}

\sf\purple{\tt{\therefore{The \ value \ of \ \frac{2-\sqrt3}{2+\sqrt3} \ is \ 0.072}}}

Similar questions