If 3+5+7+... to n terms/
5+8+11+... to 10 terms
=7 then find the value of n
Answers
_________________
Given:
For Series in numerator
a=5
d=8-5=3
Here In the denominator we have 10 terms
_________________
Solution:
Here first we will find the last term of the denominator series
Now,
Sum of series
Answer:
Given:
\dfrac{3+5+7.....n}{5+8+11......a_n}=7 For Series in numerator a=3 d=5-3=2 [tex]a_n = n
5+8+11......a
n
3+5+7.....n
=7ForSeriesinnumeratora=3d=5−3=2[tex]a
n
=n
For Series in numerator
a=5
d=8-5=3
a_n = ?a
n
=?
Here In the denominator we have 10 terms
_________________
Solution:
Here first we will find the last term of the denominator series
\begin{lgathered}\implies a_n= a+(n-1)d \\ \implies 5+(10-1)3 \\ \implies 5+27 \\ \leadsto \boxed{a_n=32}\end{lgathered}
⟹a
n
=a+(n−1)d
⟹5+(10−1)3
⟹5+27
⇝
a
n
=32
Now,
Sum of series
\begin{lgathered}S_n=\dfrac{n}{2} [a+a_n] \\ \implies \dfrac{10}{2} \times [5+32] \\ \implies 5 \times 37 \\ \leadsto\boxed{185}\end{lgathered}
S
n
=
2
n
[a+a
n
]
⟹
2
10
×[5+32]
⟹5×37
⇝
185
\begin{lgathered}\dfrac{3+5+8......n}{185}=7 \\ \implies \dfrac{n}{2} \times [2a +(n-1)d ] = 185 \times 7 \\ \implies \dfrac{n}{2} [2(3) + (n-1)2] = 1295 \\ \implies \dfrac{n}{2} \times [6 + 2n -2 ] = 1295 \\ \implies \\ \implies \dfrac{n}{\cancel{2}} [\cancel{4} + \cancel{2}n]= 1295 \\ \implies 2n + n^2 = 1295 \\ \implies n^2 -35n+37n+1295 \\ \implies n(n-35) + 37(n-35) \\ \implies (n-35)(n+37) \\ n=-37,35 \\ \\ \huge\leadsto \boxed{\boxed{n=35}}\end{lgathered}
185
3+5+8......n
=7
⟹
2
n
×[2a+(n−1)d]=185×7
⟹
2
n
[2(3)+(n−1)2]=1295
⟹
2
n
×[6+2n−2]=1295
⟹
⟹
2
n
[
4
+
2
n]=1295
⟹2n+n
2
=1295
⟹n
2
−35n+37n+1295
⟹n(n−35)+37(n−35)
⟹(n−35)(n+37)
n=−37,35
⇝
n=35