if (3+5/x)(9-15/x+25/x)=3, then find the value of (3-5/x)(9+15/x+25/x^2) and hence find x.
Answers
Correct Question :- if (3+5/x)(9 - 15/x + 25/x²) = 3, then find the value of (3 - 5/x)(9+15/x+25/x²) and hence find x. ?
Solution :-
→ (3 + 5/x)(9 - 15/x + 25/x²) = 3
we can write LHS as ,
→ (3 + 5/x){3² - 3 * (5/x) + (5/x)²} = 3
comparing LHS with (a + b)(a² - ab + b²) = a³ + b³ , we get,
- a = 3
- b = (5/x)
So,
→ (3)³ + (5/x)³ = 3
→ 27 + (125/x³) = 3
→ (125/x³) = 3 - 27
→ 125 = (-24)x³
→ x³ = (-125/24)
Now, we have to Find :-
→ (3 - 5/x)(9 + 15/x + 25/x²)
which can be written as ,
→ (3 - 5/x){3² + 3 * (5/x) + (5/x)²}
comparing with (a - b)(a² + ab + b²) = a³ - b³, we get,
→ (3)³ - (5/x)³
→ 27 - (125/x³)
Putting value of x³ Now,
→ 27 - {125/(-125/24)}
→ 27 - (-125 * 24) / 125
→ 27 - (-24)
→ 27 + 24
→ 51 (Ans.)
Also,
→ x³ = (-125/24)
or,
→ x³ = (-5) * (-5) * (-5) / (2 * 2 * 2 * 3)
→ x³ = (-5)³ / (2³ * 3)
cube root both sides,
→ x = (-5) / (2 * ³√3)
Or,
→ x = (-5) / {2 * (3)^(1/3)} . (Ans.)
Correct Question :- if (3+5/x)(9 - 15/x + 25/x²) = 3, then find the value of (3 - 5/x)(9+15/x+25/x²) and hence find x. ?
Solution :-
→ (3 + 5/x)(9 - 15/x + 25/x²) = 3
we can write LHS as ,
→ (3 + 5/x){3² - 3 * (5/x) + (5/x)²} = 3
comparing LHS with (a + b)(a² - ab + b²) = a³ + b³ , we get,
a = 3
b = (5/x)
So,
→ (3)³ + (5/x)³ = 3
→ 27 + (125/x³) = 3
→ (125/x³) = 3 - 27
→ 125 = (-24)x³
→ x³ = (-125/24)
Now, we have to Find :-
→ (3 - 5/x)(9 + 15/x + 25/x²)
which can be written as ,
→ (3 - 5/x){3² + 3 * (5/x) + (5/x)²}
comparing with (a - b)(a² + ab + b²) = a³ - b³, we get,
→ (3)³ - (5/x)³
→ 27 - (125/x³)
Putting value of x³ Now,
→ 27 - {125/(-125/24)}
→ 27 - (-125 * 24) / 125
→ 27 - (-24)
→ 27 + 24
→ 51 (Ans.)
Also,
→ x³ = (-125/24)
or,
→ x³ = (-5) * (-5) * (-5) / (2 * 2 * 2 * 3)
→ x³ = (-5)³ / (2³ * 3)
cube root both sides,
→ x = (-5) / (2 * ³√3)
Or,
→ x = (-5) / {2 * (3)^(1/3)} . (Ans.)