if (√3+√7)/(√7-√3)=a-b√21, find the value of a and b
Answers
Answered by
0
Answer:
(√3+√7)/(√7-√3) = a-b√21
here LHS = (√3+√7)/(√7-√3)
on rationalising multipling both numerator and denominator by (√7 + √3)
(√3+√7)(√7 + √3) / (√7-√3) (√7 + √3)
= (√3+√7)²/ (√7)²-(√3)² [(a-b)(a+b) = a²-b² ]
= (√3+√7)²/ (7-3)
= {(√3)²+(√7)² + (2×√3×√7)} / 4 [ (a+b)² = a²+b²+2ab ]
=(3+7+ 2√21) / 4
=(10+2√21)/4
it is given that (√3+√7)/(√7-√3)=a-b√21
so (10+2√21)/4 = a-b√21
10/4 + (2√21)/4 = a-b√21
therefore a = 10/4 = 5/2
b = -2/4 = -1/2
Similar questions