if 3^a=5^b=75^c then the value of ab-c(2a+b) reduces to ?????????
Answers
Answered by
5
Given: 3^a = 5^b = 75^c
To find: The value of ab-c(2a+b) reduces to ?
Solution:
- Now we have given 3^a = 5^b = 75^c.
- Consider 3^a = 5^b .............(i)
- Taking ln on both sides, we get:
a ln 3 = b ln 5 ............(ii)
ln 3 = b ln 5 / a .............(iii)
- Consider 5^b = 75^c .............(iv)
- Taking ln on both sides, we get:
b ln 5 = c ln 75
b ln 5 = c ln (3x5^2)
b ln 5 = c (ln 3 + ln 5^2)
b ln 5 = c (ln 3 + 2 ln 5) ..............(v)
- Putting iii in v, we get:
b ln 5 = c ((b ln 5 / a) + 2 ln 5)
ab ln 5 = bc ln 5 + 2ac ln 5
- cancelling ln 5 from both sides, we get:
ab = bc + 2ac
ab - bc - 2ac = 0
ab - c(b + 2a) = 0
Answer:
So the value of ab - c(b + 2a) is 0.
Answered by
7
Answer:
ab - c (2a+b) = 0
Step-by-step explanation:
......................
Attachments:
Similar questions