Math, asked by vandanasinghal, 1 year ago

if 3^a=5^b=75^c then the value of ab-c(2a+b) reduces to ?????????

Answers

Answered by Agastya0606
5

Given: 3^a = 5^b = 75^c

To find: The value of ab-c(2a+b) reduces to ?

Solution:

  • Now we have given 3^a = 5^b = 75^c.
  • Consider  3^a = 5^b .............(i)
  • Taking ln on both sides, we get:

              a ln 3  = b ln 5        ............(ii)

              ln 3 = b ln 5 / a  .............(iii)

  • Consider 5^b = 75^c .............(iv)
  • Taking ln on both sides, we get:

              b ln 5 = c ln 75

              b ln 5 = c ln (3x5^2)

              b ln 5 = c (ln 3 + ln 5^2)

              b ln 5 = c (ln 3 + 2 ln 5)    ..............(v)

  • Putting iii in v, we get:

              b ln 5 = c ((b ln 5 / a) + 2 ln 5)

              ab ln 5 = bc ln 5  + 2ac ln 5

  • cancelling ln 5 from both sides, we get:

              ab = bc + 2ac

              ab - bc - 2ac = 0

              ab - c(b + 2a) = 0

Answer:

          So the value of ab - c(b + 2a) is 0.

Answered by Aditiiiiiiiiiii
7

Answer:

ab - c (2a+b) = 0

Step-by-step explanation:

......................

Attachments:
Similar questions