If 3 and -3 are two zeroes of polynomial p(x)=x⁴+x³-11x²-9x+18 then find remaining two zeroes.
Answers
Answered by
3
Answer:
■(-2)&(1)
Step-by-step explanation:
alpha=3 & beta=-3
p(x)=x^2-(alpha+beta)x+(alpha×beta)
=x^2-[(3)+(-3)]x+[(3)(-3)]
=x^2-0x-9
=x^2-9
■ Divide the polynomial x^4+x^3-11x^2-9x+18 by x^2-9
x^2+x-2
x^2-9|x^4+x^3-11x^2-9x+18
|x^4 -9x^2
| x^3-2x^2-9x+18
| x^3 -9x
| -2x^2+18
| -2x^2+18
0
=x^2+x-2
=(x+2)(x-1)
☆(x+2)=0 | ☆(x-1)=0
x=-2 | x=1
Therefore,the other two zeroes are (-2) and (1).
Similar questions