If 3 cos θ = 5 sin θ, then the value of is
(a) tex]\frac{271}{979}[/tex]
(b)
(c)
(d) None of these
Answers
SOLUTION :
The correct option is (a) : 271/979
Given : 3 cos θ = 5 sin θ
sin θ/cos θ = ⅗
tan θ = ⅗
[ sin θ/cos θ = tan θ]
In right angle ∆ ,
tan θ = perpendicular/base = 3/5
perpendicular = 3 , base = 5
Hypotenuse = √( perpendicular)² + (Base)²
[By Pythagoras theorem]
Hypotenuse = √ 3² + 5² = √(9 + 25) = √34
Hypotenuse = √34
sin θ = perpendicular / hypotenuse = 3/√34
cos θ = base/ hypotenuse = 5/√34
sec θ = 1/cos θ = 1/ (√5/√34) = √34/5
The value of : 5 sin θ - 2 sec³ θ + 2 cos θ / 5 sin θ + 2 sec³ θ - 2 cos θ
= [ 5(3/√34) - 2(√34/5)³ + 2 (5/√34)] / [ 5(3/√34) + 2(√34/5)³ - 2 (5/√34)]
= (15/√34 - 2 × 34× √34 /125 + 10/√34) / (15/√34 + 2 × 34 × √34 /125 - 10/√34)
= (25/√34 - 68√34/125) / (5/√34 + 68√34/125)
= [(25 × 125 - 68 √34 ×√34)/125√34] / [(5 × 125 + 68 √34 ×√34)/125√34]
= (3125 - 68 × 34) /125√34 / (625 + 68 × 34)/125√34
= [(3125 - 2312)/125√34] / [(625 + 2312)/ 125√34]
=( 813/ 125√34) /( 2937/125√34)
= ( 813 / 125√34) × (125√34 /2937)
= 813/2937
= 271/979
5 sin θ - 2 sec³ θ + 2 cos θ / 5 sin θ + 2 sec³ θ - 2 cos θ = 271/979
Hence, the value of 5 sin θ - 2 sec³ θ + 2 cos θ / 5 sin θ + 2 sec³ θ - 2 cos θ is 271/979 .
HOPE THIS ANSWER WILL HELP YOU..
Step-by-step explanation:
plzz help me like my answerplzz help me like my answerplzz help me like my answerplzz help me like my answerplzz help me like my answerplzz help me like my answerplzz help me like my answer