Math, asked by chandrapalsingpaihod, 1 year ago

if 3 cos theta = 2 Sin Theta then the value of 4 sin theta minus 3 cos theta divided by 2 sin theta + cos theta

Answers

Answered by uk999
0
By using above method, it can be solved by this way.
Attachments:
Answered by rakeshmohata
0
Hope u like my process
=======================
Given:

3 \cos( \theta )  = 2 \sin( \theta )  \\  \\ or. \:  \:  \frac{ \sin(  \theta  ) }{ \cos( \theta ) }  =  \frac{3}{2}  \\  \\ or. \:  \tan( \theta )  =  \frac{3}{2}  = 1.5
Now..

 \frac{4 \sin( \theta ) - 3 \cos( \theta )  }{2 \sin( \theta )  +  \cos( \theta ) }  \\  \\  =  \frac{4 \sin( \theta )  - 3 \cos( \theta ) }{2 \sin( \theta ) +  \cos( \theta )  }  \times  \frac{ \cos( \theta ) }{ \cos( \theta ) }  \\  \\  =  \frac{ \frac{4 \sin( \theta ) - 3 \cos( \theta )  }{ \cos( \theta ) } }{ \frac{2 \sin( \theta ) +  \cos( \theta )  }{ \cos( \theta ) } }  \\  \\  =  \frac{4 \tan( \theta )  - 3}{2 \tan( \theta ) + 1 }  \\  \\  =  \frac{4(1.5) - 3}{2(1.5) + 1}  =  \frac{6 - 3}{3 + 1}  \\  \\  =  \frac{3}{4}
Hope this is ur required answer

Proud to help you
Similar questions