if 3 cot A=4 ,check whether 1-tan square A /1+ tan square A = cos square A - sin square A or not...
Answers
Answer:
3 cot A = 4
=> cot A = 4/3
1-tan square A /1+ tan square A = cos square A - sin square A
Since, cot A = 4/3 {cot Ѳ = base/perpendicular}
Let the base be 4x and perpendicular be 3x
According to Pythagoras Theorem:
(hypotenuse)² = (perpendicular)² + (base)²
=> (hypotenuse)² = (4x)² + (3x)²
=> (hypotenuse)² = 16x² + 9x²
=> (hypotenuse)² = 25x²
=> hypotenuse = √25x²
=> hypotenuse = 5x
So,
tan A = perpendicular/base = 3x/4x = ¾
cos A = base/hypotenuse = 4x/5x = ⅘
sin A = perpendicular/hypotenuse = 3x/5x = ⅗
L.H.S = 1 - tan² A / 1 + tan² A
R.H.S = cos² A - sin² A
L.H.S = 7/25 , R.H.S = 7/25
=> L.H.S = R.H.S
=> 1 - tan² A / 1 + tan² A = cos² A - sin² A
Answer:
cosA−sinA+1cosA+sinA−1
=(cosA−sinA+1)(cosA+sinA+1)(cosA+sinA−1)(cosA+sinA+1)
=(cosA+1¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯−sinA)(cosA+1¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯+sinA)(cosA+sinA¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯−1)(cosA+sinA¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯+1)
=(cosA+1)2−(sinA)2(cosA+sinA)2−12
=cos2A+2cosA+1−sin2Acos2A+sin2A+2sinAcosA−1
=cos2A+2cosA+cos2A1+2sinAcosA−1(∵ cos2A+sin2A=1)
=2cos2A+2cosA2sinAcosA
=2cos2A2sinAcosA+2cosA2sinAcosA
=cosAsinA+1sinA
=cotA+cosecA
=cosecA+cotA
Proved.