Math, asked by shrutibaisya118, 5 months ago

If 3 cot A = 4, check whether (1 – tan2A)/(1 + tan2A) = cos2 A – sin2 A or not.​

Answers

Answered by hackerforawhile
1

Answer:

f 3 cot A = 4, check whether (1 – tan2A)/(1 + tan2A) = cos2 A – sin2 A or not.​

Step-by-step explanation:

Answered by Anonymous
8

Given:

  • 3 cot A = 4 => cot A = 4/3

Solution

Let us consider a triangle ABC, im which right-angled at B

Since,

tan A = 1/cot A

tan A = 1 /(4/3) = 3/4

_____________

 {\tt{ \dfrac{BC}{AB}  = \dfrac{3}{4} }}

Let BC = 3k and AB = 4k

By using Pythagoras theorem,

(Hypotenuse)² = (Perpendicular)² + (Base)²

 \implies AC² = AB² + BC²

 \implies AC² = (4k)² + (3k)²

 \implies AC² = 16k² + 9k²

 \implies AC = √25k²

 \implies AC = 5k

 \\ \bigstar{\pink{\boxed {\tt{ sin \ A = \dfrac{Opposite \ side}{Hypotenuse} }}}} \\

 \implies BC/AC

 \implies 3k/5k

 \implies 3/5

Same as the above;

 \\ {\tt{ cos \ A = \dfrac{Adjacent \ side}{Hypotenuse} }} \\

 \implies AB/AC

 \implies 4k/5k

 \implies 4/5

______________

To check:

  • (1-tan²A)/(1+tan²A) = cos² A – sin² A or not

Let take L.H.S. first;

 \implies (1-tan²A)/(1+tan²A)

 \implies [1 – (3/4)²]/ [1 + (3/4)²]

 \implies [1 – (9/16)]/[1 + (9/16)]

 \implies 7/25

Now, take R.H.S. ;

 \implies cos² A – sin² A

 \implies (4/5)² – (3/5)²

 \implies (16/25) – (9/25)

 \implies 7/25

Since,

L.H.S. = R.H.S.

 {\red{\boxed{\underline {\tt{ \dfrac{7}{25} _{(LHS)} = \dfrac{7}{25} _{(RHS)} }}}}} \\

Hence proved ..!

Attachments:
Similar questions