Math, asked by shared1977, 1 day ago

If 3 cot theta = 2, then the value of 4sintheta - 3costheta / 2sintheta + 6costheta is​

Answers

Answered by Anonymous
36

⚝ Given :-

  • 3 cot θ = 2

⚝ Find :-

  • 4 sinθ - 3 cosθ/ 2 sinθ + 6 cosθ

⚝ Solution :-

\leadsto{ \sf{3 \:  Cot \theta = 2}}

\leadsto{ \sf{ Cot \theta =  \frac{2}{3}}}

• As we know that,

\leadsto{ \sf{cot \theta = \frac{B}{P} }}

• we can say that –

\leadsto{ \sf{\frac{B}{P} = \frac{2}{3} }}

• Thus,

  • Base (B) = 2
  • Perpendicular (P) = 3

CALCULATING HYPOTENUSE :

By Using Pythagoras Theorem :-

⇝ H² = B² + P²

⇝ H² = 2² + 3²

⇝ H² = 4 + 9

⇝ H² = 13

⇝ H = √13

• Therefore, Hypotenuse is √13. Now,

\leadsto{ \boxed{ \sf{sin  \theta = \frac{P}{H} }}}

• Substitute the values :

\leadsto{ \boxed{ \sf{sin  \theta = \frac{3}{ \sqrt{13} } }}} \: \bigstar

• Similarly,

\leadsto{ \boxed{ \sf{cos  \theta = \frac{B}{H} }}}

• Substitute the values :

\leadsto{ \boxed{ \sf{cos  \theta = \frac{2}{ \sqrt{13} } }}} \bigstar

Now,

\leadsto{ \displaystyle{ \sf{ \frac{4 \: sin \theta - 3\: cos \theta}{2\: sin \theta + 6\: cos \theta}}}}

Now, we've –

  • Sin θ = 3/√13
  • Cos θ = 2/√13

Putting all values :–

 \leadsto{ \displaystyle{ \sf{ \frac{4 \times   \frac{3}{ \sqrt{13} }  \: -  \: 3 \times  \frac{2}{ \sqrt{13} } }{2 \times  \frac{3}{ \sqrt{13} }   \: + \:  6 \times  \frac{2}{ \sqrt{13} } }}}}

 \leadsto{ \displaystyle{ \sf{ \frac{ \frac{12}{ \sqrt{13} }   -   \frac{6}{ \sqrt{13} } }{ \frac{6}{ \sqrt{13} }  +   \frac{12}{ \sqrt{13} }  } }}}

 \leadsto{ \displaystyle{ \sf{ \frac{ \frac{6}{ \sqrt{13} } }{ \frac{18}{ \sqrt{13} }}}}}

 \leadsto  {\displaystyle{ \sf{\frac{6}{ \sqrt{13} }  \times  \frac{ \sqrt{13} }{18} }}}

\leadsto  {\displaystyle{ \sf{\frac{ \cancel6}{   \cancel{\sqrt{ 13}} }  \times  \frac{  \cancel{\sqrt{13}} }{ \cancel{18} \:  \: ^{3} } }}}

 \leadsto{ \displaystyle{ \sf{ \red{ \frac{1}{3} }}}}

• Henceforth, the value of \bold{ \sf{ \frac{4 \: sin \theta - 3\: cos \theta}{2\: sin \theta + 6\: cos \theta}}} is  \bold{ \sf{ \frac{1}{3}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions