If 3 cot theta equals to 4 find the value of 5 sin theta minus 3 cos theta upon 5 sin theta + 3 cos theta
Answers
Answered by
11
Hi ,
Here I'm using A instead of theta
CotA= 4/3-----( 1 )
Now ,
(5sinA + 3cosA )/(5sinA - 3cosA )
Divide numerator and denominator with sinA , we get
= ( 5 + 3cosA/sinA)/(5 - 3cosA/sinA)
= ( 5 + 3cotA) / ( 5 - 3cotA )
= ( 5 + 3 ×4/3 )/ [ 5 - 3× ( 4/3 ) ]
= ( 5 + 4 ) / ( 5 - 4 )
= 9/1
= 9
I hope this helps you.
:)
Here I'm using A instead of theta
CotA= 4/3-----( 1 )
Now ,
(5sinA + 3cosA )/(5sinA - 3cosA )
Divide numerator and denominator with sinA , we get
= ( 5 + 3cosA/sinA)/(5 - 3cosA/sinA)
= ( 5 + 3cotA) / ( 5 - 3cotA )
= ( 5 + 3 ×4/3 )/ [ 5 - 3× ( 4/3 ) ]
= ( 5 + 4 ) / ( 5 - 4 )
= 9/1
= 9
I hope this helps you.
:)
Answered by
2
Answer
Given, 3cotθ=4
∴cotθ= 4/3 = B/P
USING PYTHAGORAS THEOREM.,
H² = B² + P²
H² = 4² + 3²
H² = 16+9
H² = 25
H = = 5
Now,
5sinθ-3cosθ = (5 X 3/5) - (3 X 4/5)
= 15/5 - 12/5
= 3/5
5sinθ+3cosθ = (5 X 3/5) + (3 X 4/5)
= 15/5 + 12/5
= 27/5
THEREFORE , 5sinθ−3cosθ/5sinθ+3cosθ
3/5/27/5
5 GETTING CANCELLED
= 3/27 = 1/9
Similar questions