Math, asked by Allwinluke, 1 year ago

If 3 cotA=4,check whether 1-tan^2A/1+tan^2A=cos^2A-sin^2A or not

Answers

Answered by jitendra420156
14

Therefore \frac{1-tan^2A}{1+tan^2A} = cos^2A-sin^2A

Step-by-step explanation:

Given, 3 cot A= 4

\Leftrightarrow cot A=\frac{4}{3}

Then,  tan A = \frac{3}{4}

cosecA=\sqrt{1+cot^2A}

\Leftrightarrow cosecA=\sqrt{1+(\frac{4}{3})^2 }

\Leftrightarrow cosecA=\sqrt{\frac{25}{9}

\Leftrightarrow cosecA={\frac{5}{3}

\Leftrightarrow sinA={\frac{3}{5}

So,

cos A=\sqrt{1- sin^2A}

\Leftrightarrow cos A=\frac{4}{5}

L.H.S =\frac{1-tan^2A}{1+tan^2A}                          R.H.S=cos^2A-sin^2A

        = \frac{1-(\frac{3}{4})^2 }{1+(\frac{3}{4})^2 }                                   =(\frac{4}{5})^2-(\frac{3}{5})^2

       =\frac{7}{25}                                           =\frac{7}{25}

Therefore \frac{1-tan^2A}{1+tan^2A} = cos^2A-sin^2A

Answered by harshpandit8417
6

I hope it is helpful to you.❤

Attachments:
Similar questions