Math, asked by prernasinghmail8660, 4 days ago

if (^3+i)100=2^99(a+ib),then show that a^2+b^2=4

Answers

Answered by aasthagaur09
0

Answer:

Since ω=  

3

−1+i  

3

 

=  

2

i  

2

+i  

3

 

 

⇒  

3

+i=  

i

=−2ωi

Thus (  

3

+i)  

100

=(−2ωi)  

100

=2  

100

⋅ω  

100

i  

100

 

=2  

100

ω(1)=2  

100

(  

2

−1+i  

3

 

)=2  

99

(−1+i  

3

)

So a=−1 and b=  

3

 

Hence a  

2

+b  

2

=1+3=4

Similar questions