if 3 sin theta+4 cos theta=5 then find value of 4 sin theta -3 cos theta
Answers
Answered by
2
Answer :
4sinθ - 3cosθ = 0
Solution :
- Given : 3sinθ + 4cosθ = 5
- To find : 4sinθ - 3cosθ = ?
We have ;
=> 3sinθ + 4cosθ = 5
=> sinθ•3 + cosθ•4 = 5
=> sinθ•(3/5) + cosθ•(4/5) = 1
=> sinθ•cos∅ + cosθ•sin∅ = 1
[ Where cos∅ = 3/5 and sin∅ = 4/5 ]
=> sin(θ+∅) = sin90°
=> θ + ∅ = 90°
Now ,
Taking cosine both the sides , we get ;
=> cos(θ+∅) = cos90°
=> cosθ•cos∅ - sinθ•sin∅ = 0
=> cosθ•(3/5) - sinθ•(4/5) = 0
=> cosθ•3 - sinθ•4 = 0
=> 3cosθ - 4sinθ = 0
=> -(-3cosθ + 4sinθ) = 0
=> -3cosθ + 4sinθ = 0
=> 4sinθ - 3cosθ = 0
Hence ,
4sinθ - 3cosθ = 0
Similar questions
Science,
2 months ago
Chemistry,
2 months ago
Math,
5 months ago
World Languages,
11 months ago
English,
11 months ago