Math, asked by sujal3202, 1 year ago

if 3 sin theta + 4 cos theta =5 then what is 4 sin theta -3 cos theta

Answers

Answered by Anonymous
4

Answer:

\bold\red{4  \sin \theta - 3 \cos \theta  = ±3}

Step-by-step explanation:

For simplicity,

Let's denote 'theta' as 'alpha'.

Given,

3 \sin( \alpha )  + 4 \cos( \alpha )  = 5 .............(i)

We have to find the value of,

4 \sin( \alpha )  - 3  \cos ( \alpha )

Let,

4 \sin( \alpha )  - 3 \cos( \alpha )=x .............(ii)

Now,

squaring and adding eqn (i) and (ii),

we get,

  =  > (9 + 16) { \sin }^{2}  \alpha  + (16 + 9) { \cos }^{2}  \alpha  = 16 +  {x}^{2}  \\  \\  =  > 25( { \sin}^{2}  \alpha  +  { \cos}^{2}  \alpha ) = 16 +  {x}^{2}

But,

we know that,

 { \sin }^{2}  \alpha  +  { \cos }^{2}  \alpha  = 1

Therefore,

putting the value,

we get,

 =  > 16 +  {x}^{2}  = 25 \\  \\  =  >  {x}^{2}  = 25 - 16 \\  \\  =  >  {x}^{2}  = 9 \\ \\    =  > x =  \sqrt{9}  \\  \\  =  > x = ±3

Therefore,

4 \sin( \alpha )  - 3 \cos( \alpha )  = ±3

Hence,

\bold{4  \sin \theta - 3 \cos \theta  = ±3}

Similar questions