If 3 sin theta + 5cos theta =5 ,prove that 5 sin theta - 3 cos theta =+or - 3
Answers
Answered by
1004
Given:
(3 sinθ+5cosθ)²= 5²
Squaring on both sides.
(3sinθ)²+(5cosθ)²+2× 3sinθ 5cosθ= 25
[a+b= a²+b²+2ab]
9sin²θ+ 25cos²θ+30sinθcosθ= 25
9 (1-cos²θ) + 25(1-sin²θ)+30sinθcosθ=25
[sin²θ + cos²θ =1]
9-9cos²θ + 25-25sin²θ +30sinθcosθ=25
9+25 -(9cos²θ +25sin²θ -30sinθcosθ) =25
34 - (9cos²θ +25sin²θ -30sinθcosθ) =25
- (25sin²θ +9cos²θ-30sinθcosθ) =25-34
(25sin²θ+9cos²θ -30sinθcosθ) =9
(5sinθ - 3cosθ)²= 9
(5sinθ - 3cosθ)= √9
(5sinθ - 3cosθ)= ±3
L.H.S = R.H.S
==================================================================
Hope this will help you...
(3 sinθ+5cosθ)²= 5²
Squaring on both sides.
(3sinθ)²+(5cosθ)²+2× 3sinθ 5cosθ= 25
[a+b= a²+b²+2ab]
9sin²θ+ 25cos²θ+30sinθcosθ= 25
9 (1-cos²θ) + 25(1-sin²θ)+30sinθcosθ=25
[sin²θ + cos²θ =1]
9-9cos²θ + 25-25sin²θ +30sinθcosθ=25
9+25 -(9cos²θ +25sin²θ -30sinθcosθ) =25
34 - (9cos²θ +25sin²θ -30sinθcosθ) =25
- (25sin²θ +9cos²θ-30sinθcosθ) =25-34
(25sin²θ+9cos²θ -30sinθcosθ) =9
(5sinθ - 3cosθ)²= 9
(5sinθ - 3cosθ)= √9
(5sinθ - 3cosθ)= ±3
L.H.S = R.H.S
==================================================================
Hope this will help you...
Answered by
467
Given :
3 sinθ + 5cosθ =5
To Find :
5Sinθ -3cosθ =±3
Solution :
3sinθ + 5cosθ =5
Squaring on both the sides we get,
(3sinθ + 5cosθ)² = 5²
9sin²θ + 25 cos²θ +30 sinθcos θ =25 [ ∵(a+b)² = a² + b² +2ab]
9(1-cos²θ) + 25 (1 -sin²θ) + 30sinθcosθ =25
∵ sin²θ + cos²θ =1
9-9cos²θ + 25 -25sin²θ +30 sinθcosθ =25
-9cos²θ -25sin²θ +30 sinθcosθ =25-34
-9cos²θ -25sin²θ +30 sinθcosθ =-9
9cos²θ + 25sin²θ -30 sinθcosθ =9
25sin²θ + 9cos²θ -30 sinθcosθ=9
(5sinθ-3cosθ)² = 9
∵[(a-b)²= a²+b²-2ab]
(5sinθ-3cosθ) = √9
(5sinθ-3cosθ) = ±3
Hence proved
3 sinθ + 5cosθ =5
To Find :
5Sinθ -3cosθ =±3
Solution :
3sinθ + 5cosθ =5
Squaring on both the sides we get,
(3sinθ + 5cosθ)² = 5²
9sin²θ + 25 cos²θ +30 sinθcos θ =25 [ ∵(a+b)² = a² + b² +2ab]
9(1-cos²θ) + 25 (1 -sin²θ) + 30sinθcosθ =25
∵ sin²θ + cos²θ =1
9-9cos²θ + 25 -25sin²θ +30 sinθcosθ =25
-9cos²θ -25sin²θ +30 sinθcosθ =25-34
-9cos²θ -25sin²θ +30 sinθcosθ =-9
9cos²θ + 25sin²θ -30 sinθcosθ =9
25sin²θ + 9cos²θ -30 sinθcosθ=9
(5sinθ-3cosθ)² = 9
∵[(a-b)²= a²+b²-2ab]
(5sinθ-3cosθ) = √9
(5sinθ-3cosθ) = ±3
Hence proved
Similar questions