Math, asked by vinnie0003, 11 months ago

If 3 tan^2 x-1= 0 and 0 less than x less than 90° then value of x is

Answers

Answered by hiteshbhandari527
11

Answer:

3tan^2x-1 =0

3tan^2x=1

tan^2x =1/3

tanx = √1/3

tanx =1/√3

X = 30°

Answered by sanjeevk28012
1

The value of x for the given trigonometrical function is 30°  

Step-by-step explanation:

Given as :

The Trigonometrical function

3 tan²x - 1 = 0       0 °< x < 90°

i.e The value of x varies from 0° to 90°

According to question

To calculate value of x

i.e The equation , 3 tan²x - 1 = 0

Or,  3 tan²x = 1

Or,  tan²x = \dfrac{1}{3 }

i.e  tan x = √\dfrac{1}{3}

Or, tan x = \dfrac{1}{\sqrt{3} }

∴    x = tan^{-1} ( \dfrac{1}{\sqrt{3} } )

Or,  x = 30°                                ( ∵ tan 30° = \dfrac{1}{\sqrt{3} } )

So, The value of x = 30°                                

i.e The value of x lies between 0° to 90°

Hence, The value of x for the given trigonometrical function is 30°   . Answer                              

Similar questions