Math, asked by ckishoreramana3490, 11 months ago

If 3 tan A=4then find sin A
If 3tan A=4find sinA

Answers

Answered by Brâiñlynêha
12

\huge\mathfrak{\purple{Answer:-}}

\sf\bullet 3 tan A=4\\ \\ \sf\bullet tanA=\dfrac{4}{3}

Means

\boxed{\sf{tan\theta=\dfrac{Perpendicular}{Base}}}

\sf\bullet P= 4\:\:\: and\:\:B=3

Now by Pythagoras

\sf{\purple{H{}^{2}=B{}^{2}+P{}^{2}}}\\ \\ \sf\implies H{}^{2}= (3){}^{2}+(4){}^{2}\\ \\ \sf\implies H{}^{2}= 9+16\\ \\ \sf\implies H{}^{2}=25\\ \\ \sf\implies H=\sqrt{25}\\ \\ \sf\implies H=5

Now we have to find the Value of sinA

\boxed{\bigstar{\sf{sin\theta=\dfrac{Perpendicular}{Height}}}}

\sf\implies sinA=\dfrac{P}{H}\\ \\ \sf\bullet P=4\:\:\:and\:\:H=5\\ \\ \sf\implies sinA=\dfrac{4}{5}

Answered by Anonymous
12

\large{\underline{\mathrm{\blue{Solution-}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

It is given that,

⠀⠀⠀⠀⠀

\sf{3TanA\:=\:4}

⠀⠀⠀⠀⠀

\therefore \sf{TanA\:=\:\dfrac{4}{3}}

⠀⠀⠀⠀⠀

Also we know that,

⠀⠀⠀⠀⠀

\sf{TanA\:=\:\dfrac{P}{B}}

⠀⠀⠀⠀⠀

: \implies \sf{\dfrac{4}{3}\:=\:\dfrac{P}{B}}

⠀⠀⠀⠀⠀

Let perpendicular be 4k and base be 3k.

⠀⠀⠀⠀⠀

Using Pythagoras theorem,

⠀⠀⠀⠀⠀

\sf{H^2\:=\:P^2\:+\:B^2}

⠀⠀⠀⠀⠀

: \implies \sf{H^2\:=\:(4k)^2\:+\:(3k)^2}

⠀⠀⠀⠀⠀

: \implies \sf{H^2\:=16k^2\:+\:9k^2}

⠀⠀⠀⠀⠀

: \implies \sf{H^2\:=\:25k^2}

⠀⠀⠀⠀⠀

: \implies \sf{H\:=5k}

⠀⠀⠀⠀⠀

\rule{200}2

⠀⠀⠀⠀⠀

Now, we know that,

⠀⠀⠀⠀⠀

\bold{\sf{SinA\:=\:\dfrac{Perpendicular}{Hypotenuse}}}

⠀⠀⠀⠀⠀

: \implies \sf{SinA\:=\:{\cancel{\dfrac{4k}{5k}}}}

⠀⠀⠀⠀⠀

\huge{\therefore} \huge{\boxed{\red{\sf{SinA\:=\dfrac{4}{5}}}}}

Similar questions