Math, asked by manjulajoshi2611, 2 months ago

if 3^x = 5^y = 45^z , prove that x= 2yz/y-z

Answers

Answered by mathdude500
4

\large\underline{\sf{Given- }}

\red{\rm :\longmapsto\: {3}^{x} =  {5}^{y} =  {45}^{z}}

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\:\boxed{ \rm{ x =  \frac{2yz}{y - z}}}

\large\underline{\sf{Solution-}}

Given that

\red{\rm :\longmapsto\: {3}^{x} =  {5}^{y} =  {45}^{z}}

Let us assume that

\red{\rm :\longmapsto\: {3}^{x} =  {5}^{y} =  {45}^{z} = k}

\rm :\implies\: {3}^{x} = k

\rm :\implies\: {5}^{y} = k

\rm :\implies\: {45}^{z} = k

We know,

\boxed{ \rm{If \:  \:  \:   {x}^{y} = z \: \rm \implies\:x =  {\bigg(z\bigg) }^{\dfrac{1}{y} } }}

So, using this identity, we get

\rm :\longmapsto\:3 = {\bigg(k \bigg) }^{\dfrac{1}{x} }

\rm :\longmapsto\:5 = {\bigg(k \bigg) }^{\dfrac{1}{y} }

and

\rm :\longmapsto\:45 = {\bigg(k \bigg) }^{\dfrac{1}{z} }

can be rewritten as

\rm :\longmapsto\:3 \times 3 \times 5 = {\bigg(k \bigg) }^{\dfrac{1}{z} }

\rm :\longmapsto\: {3}^{2}  \times 5 = {\bigg(k \bigg) }^{\dfrac{1}{z} }

\rm :\longmapsto\:{\bigg(k\bigg) }^{\dfrac{2}{x} } \times {\bigg(k\bigg) }^{\dfrac{1}{y} } = {\bigg(k \bigg) }^{\dfrac{1}{z} }

We know,

\boxed{ \rm{  {k}^{x} \times  {k}^{y}  =  {k}^{x + y}}}

So, using this identity, we get

\rm :\longmapsto\:{\bigg(k\bigg) }^{\dfrac{2}{x}  + \dfrac{1}{y} }= {\bigg(k \bigg) }^{\dfrac{1}{z} }

We know,

\boxed{ \rm{ If \:  \:  {k}^{x} =  {k}^{y} \rm \implies\:x = y}}

So, using this identity, we get

\rm :\longmapsto\:\dfrac{2}{x}  + \dfrac{1}{y}  = \dfrac{1}{z}

\rm :\longmapsto\:\dfrac{2}{x}  = \dfrac{1}{z}  - \dfrac{1}{y}

\rm :\longmapsto\:\dfrac{2}{x}  = \dfrac{y - z}{zy}

\rm :\longmapsto\:\dfrac{1}{x}  = \dfrac{y - z}{2zy}

\rm :\longmapsto\:x = \dfrac{2yz}{y  -  z}

Hence, Proved

Similar questions