Math, asked by pratheek467, 11 months ago

If 378 coins consist of re 1.50 paise 25 paise. Coins whose values are in the ratio of 13:11:17. The number of 50 paise coins will be

Answers

Answered by GauravSaxena01
6

Solution:-

let,the value of rupee, 50p and 25p coins be 13x, 11x and 7x resp.

number. of rupee coins = 13x

number. of 50p coins = 11x ÷ 0.50 = 22x

number. of 25p coins = 7x ÷ 0.25 = 28x

the total number. of coins we have

7x + 22x + 28x = 378

63x = 378

x = 6

number of 50p coins are 22x = 22 x 6 = 132 coins

===========

@GauravSaxena01

Answered by Anonymous
0

Answer:

Question:-

the length of a rectangle is 8m more than its breadth if its perimeter is 128m, find its length , breadth and Area

Answer:-

The length of Rectangle is 36 m

The breadth of rectangle is 28 m

The area of Given rectangle is 1008 m².

To find:-

Length and breadth of rectangle

Area of rectangle

Solution:-

Let the breadth be x

Length = 8 + x

Perimeter = 128 m

\boxed{ \large{ \mathfrak{perimeter = 2(l + b)}}}

According to question,

\large{ \tt: \implies \: \: \: \: \: 2(8 + x + x) = 128}

\begin{gathered} \large{ \tt: \implies \: \: \: \: \: 8 + 2x = \frac{128}{2} } \\ \end{gathered}:

\large{ \tt: \implies \: \: \: \: \: 8 + 2x = 64}

\large{ \tt: \implies \: \: \: \: \: 2x = 64 - 8}

\large{ \tt: \implies \: \: \: \: \: 2x = 56}

\large{ \tt: \implies \: \: \: \: \: x = 28}

The breadth of rectangle is 28 m

Length = 8 + x = 28 + 8 = 36 m

\large{ \boxed{ \mathfrak{area = l \times b}}}

\large{ \tt: \implies \: \: \: \: \: area = 28\times 36}

\large{ \tt: \implies \: \: \: \: \: area = 1008 \: {m}^{2} }

The area of Given rectangle is 1008 m².

Similar questions