If 3a - (3/a) - 3 = 0. Then a^3 - (1/a^3) + 2=?
Answers
Answered by
6
3a - 3/a - 3 = 0
=> a - 1/a - 1 = 0
=> a - 1/a = 1
On cubing both sides, we get
a^3 - 1/a^3 - 3(a)(1/a)(a-1/a) = 1
=> a^3 - 1/a^3 - 3(1) = 1
=> a^3 - 1/a^3 = 4
=> a^3 - 1/a^3 + 2 = 4 + 2
=> a^3 - 1/a^3 + 2 = 6
=> a - 1/a - 1 = 0
=> a - 1/a = 1
On cubing both sides, we get
a^3 - 1/a^3 - 3(a)(1/a)(a-1/a) = 1
=> a^3 - 1/a^3 - 3(1) = 1
=> a^3 - 1/a^3 = 4
=> a^3 - 1/a^3 + 2 = 4 + 2
=> a^3 - 1/a^3 + 2 = 6
Answered by
6
Given Equation is 3a - (3/a) - 3 = 0
It can be written as:
3(a - 1/a) - 3 = 0
(a - 1/a) = 1
On cubing both sides, we get
= > (a - 1/a)^3 = 1
= > a^3 - 1/a^3 - 3(a - 1/a) = 1
= > a^3 - 1/a^3 - 3(1) = 1
= > a^3 - 1/a^3 = 4
= > a^3 - 1/a^3 = 4
Now,
a^3 - 1/a^3 + 2 = 4 + 2
= 6.
Hope this helps!
It can be written as:
3(a - 1/a) - 3 = 0
(a - 1/a) = 1
On cubing both sides, we get
= > (a - 1/a)^3 = 1
= > a^3 - 1/a^3 - 3(a - 1/a) = 1
= > a^3 - 1/a^3 - 3(1) = 1
= > a^3 - 1/a^3 = 4
= > a^3 - 1/a^3 = 4
Now,
a^3 - 1/a^3 + 2 = 4 + 2
= 6.
Hope this helps!
Similar questions