If 3a+7b/3a-7b=4/3 then find the value of the ratio 3a²-7b²/3a²+7b²
Answers
Answer:
3a²-7b²/3a²+7b² = 170/173
Step-by-step explanation:
3a+7b/3a-7b=4/3
Let say a = bk
(3bk + 7b) / (3bk - 7b) = 4/3
=> (3k + 7)/(3k - 7) = 4/3
=> 9k + 21 = 12k - 28
=> 3k = 49
3a²-7b²/3a²+7b²
= (3(bk)² - 7b²)/(3(bk)² + 7b²)
= (3k² - 7)/(3k² + 7)
= (9k² - 21)/(9k² + 21)
= ((3k)² - 21)/((3k)² + 21)
= ( 49² - 21)/(49² + 21)
= (49 * 7 - 3) /(49 * 7 + 3)
= 340/346
= 170/173
3a²-7b²/3a²+7b² = 170/173
Answer:
3a²-7b²/3a²+7b² = 170/173
Step-by-step explanation:
3a+7b/3a-7b=4/3
Let say a = bk
(3bk + 7b) / (3bk - 7b) = 4/3
=> (3k + 7)/(3k - 7) = 4/3
=> 9k + 21 = 12k - 28
=> 3k = 49
3a²-7b²/3a²+7b²
= (3(bk)² - 7b²)/(3(bk)² + 7b²)
= (3k² - 7)/(3k² + 7)
= (9k² - 21)/(9k² + 21)
= ((3k)² - 21)/((3k)² + 21)
= ( 49² - 21)/(49² + 21)
= (49 * 7 - 3) /(49 * 7 + 3)
= 340/346
= 170/173
3a²-7b²/3a²+7b² = 170/173
plzzzzzzzzz thnks