Math, asked by SamirChaudhary8356, 1 year ago

If 3A =  \left[\begin{array}{ccc}1&2&2\\2&1&-2\\-2&2&-1\end{array}\right] , then show that A⁻¹ = A'

Answers

Answered by sprao534
1
Please see the attachment
Attachments:
Answered by ujalasingh385
1

Answer:

In this question,

We have to show to that if 3A = [tex]\mathbf{\begin{bmatrix} 1 &2 &2 \\  2 &1 &-2 \\  -2 &2 &-1  \end{bmatrix}}[/tex] then A⁻¹ = A(transpose)

Proof -

3A = [tex]\mathbf{\begin{bmatrix} 1 &2 &2 \\  2 &1 &-2 \\  -2 &2 &-1  \end{bmatrix}}[/tex]

A\ =\ \frac{1}{3}\begin{bmatrix}1 &2 &2 \\ 2 &1 &-2 \\ -2 &2 &-1 \end{bmatrix}

A^{T} = \frac{1}{3}\begin{bmatrix}1 &2 &-2 \\ 2 &1 &2 \\ 2 &-2 &-1 \end{bmatrix}

Then AA^{T}

AA^{T}\ =\  \frac{1}{3}\begin{bmatrix}1 &2 &2 \\ 2 &1 &-2 \\ -2 &2 &-1 \end{bmatrix}\times \frac{1}{3}\begin{bmatrix}1 &2 &-2 \\ 2 &1 &2 \\ 2 &-2 &-1 \end{bmatrix}

AA^{T}\ =\ \frac{1}{9}\begin{bmatrix}9 &0 &0 \\ 0 &9 &0 \\ 0 &0 &9 \end{bmatrix}

AA^{T}\ =\ \begin{bmatrix}1 &0 &0 \\ 0 &1 &0 \\ 0 &0 &1 \end{bmatrix}

AA^{T}\ =\ I

We know that A is invertible

Therefore \mathbf{A^{T}\ =\ A^{-1}}

Hence, proved

Similar questions