Math, asked by Niraj1593, 1 year ago

Show that \left|\begin{array}{ccc}a-b&b-c&c-a\\b-c&c-a&a-b\\c-a&a-b&b-c\end{array}\right| = 0

Answers

Answered by Debarth
0
! a-b b-c c-a !
! b-c c-a a-b ! = 0
! c-a a-b b-a !
Answered by hukam0685
2
To Show that
\left|\begin{array}{ccc}a-b&b-c&c-a\\b-c&c-a&a-b\\c-a&a-b&b-c\end{array}\right|=0\\

using the properties of Determinant

\left|\begin{array}{ccc}a&b&c\\b&c&a\\c&a&b\end{array}\right| - \left|\begin{array}{ccc}b&c&a\\c&a&b\\a&b&c\end{array}\right|

exchange R1 <=> R3 and R2 <=> R3 in second Determinant

\left|\begin{array}{ccc}a&amp;b&amp;c\\b&amp;c&amp;a\\c&amp;a&amp;b\end{array}\right| - \left|\begin{array}{ccc}a&amp;b&amp;c\\b&amp;c&amp;a\\c&amp;a&amp;b\end{array}\right|

now we can see that both the determinants are same,so on subtraction result will be zero

\left|\begin{array}{ccc}a&amp;b&amp;c\\b&amp;c&amp;a\\c&amp;a&amp;b\end{array}\right| - \left|\begin{array}{ccc}a&amp;b&amp;c\\b&amp;c&amp;a\\c&amp;a&amp;b\end{array}\right|=0

Similar questions