Math, asked by Anonymous, 1 year ago

if 3cot = 4 , Show that

 \frac{(1 \:  -  \: tan {}^{2} )}{(1 \:  +  \: tan {}^{2} )}  =  \: ( \cos {}^{2}  -  \sin {}^{2} )

Answers

Answered by gangwarakash999
2
ʜᴏᴩᴇ ɪᴛ ʜᴇʟᴩꜱ yᴏᴜ:)

ᴍᴀʀᴋ ᴍᴇ ᴀꜱ ʙʀᴀɪɴʟɪᴇꜱᴛ:-:
Attachments:
Answered by VilokNayak
2
HOLA

=======================

cot \:  =  \:  \frac{3}{4}  =   \frac{b}{h}  \\  \\  \\ to \: find \: perpendicular \\  \\ ac {}^{2}  =  \: ab {}^{2}  \:  +  \: bc {}^{2}  \\ ac {}^{2}  = (3) {}^{2}  + (4) {}^{2}  \\ ac {}^{2}  =  \: 9 \:  +  \: 16 \\  \\ ac =  \:  \sqrt{25}  =  \: 5 \\  \\ ac \:  =  \: 5 \:  \\  \\ tan \:  =  \:  \frac{4}{3}  \:  \:  \:  \:  \:  \:  \: sin \:  =  \:  \frac{4}{5}  \\  \\ cos \:  =  \:  \frac{3}{5}  \\  \\  \\  \frac{(1 - tan {)}^{2} }{(1 + tan {)}^{2} }  = (cos {}^{2}  - sin {}^{2} ) \\  \\  \\ (1 \:  - ( \frac{4}{3}  {)}^{2} ) \\  -  -  -  -   -  =  \: ( \frac{3}{5} ) {}^{2} \:  -  \: ( \frac{4}{5} ) {}^{2}   \\ (1 + ( \frac{4}{3} ) {}^{2} ) \\  \\  \\ (1 -  \frac{16}{9} ) \:   \\  -   -  -  -  - \:  = ( \frac{9}{25}   -  \frac{16}{25})  \\ (1 +  \frac{16}{9} ) \\  \\  \\  \frac{9 - 16}{9 + 25}  =  \frac{7}{25}  =  \frac{9}{25}  -  \frac{16}{25}  =  \frac{7}{25}  \\  \\ rhs \:  =  \: lhs


HOPE U UNDERSTAND

===========================



Similar questions