If 3cotA=4 then find Sin²A - Sec²A
Answers
Answered by
10
here you go ☆☆
so,
given:-
◇base = 4
◇perpendicular = 3
to find :-
◇h = ?
◇Sin²A - Sec²A
using Pythagoras theorem
▪
▪
▪
□sin A = 3/5
□sec A =5/4
▪
▪
▪
▪
▪
▪
hope it helps:)
so,
given:-
◇base = 4
◇perpendicular = 3
to find :-
◇h = ?
◇Sin²A - Sec²A
using Pythagoras theorem
▪
▪
▪
□sin A = 3/5
□sec A =5/4
▪
▪
▪
▪
▪
▪
hope it helps:)
patnaikdhirenpov932n:
tq
Answered by
12
let b = base , p = perpendicular and
h = hypotenuse
3cotA = 4 => cotA = 4 / 3 = b/ p
solve for ' h' :
------------------
by Pythagoras theorem, we get
h^2 = ( b)^2 + ( p )^2
h^2 = ( 4 )^2 + ( 3 )^2
h^2 = 16 + 9 = 25
h = √25 => h = 5
Find the value of SinA :
--------------------------------
since, we know sinA = p / h
sinA = 3 / 5
Find the value of SecA :
---------------------------------
secA = h / b = 5 / 4
so now put the value of sinA and secA in the Given trigonometric expression :
sin^2A - sec^2A = ( 3 / 5 )^2 - ( 5 / 4 )^2
= ( 9 / 25 ) - ( 25 / 16 )
= ( 144 - 625 ) / 400
= - 481 / 400
therefore, sin^2A - sec^2A = - 481 / 400
Answer : - 481 / 400
-------------------------------------------------------
h = hypotenuse
3cotA = 4 => cotA = 4 / 3 = b/ p
solve for ' h' :
------------------
by Pythagoras theorem, we get
h^2 = ( b)^2 + ( p )^2
h^2 = ( 4 )^2 + ( 3 )^2
h^2 = 16 + 9 = 25
h = √25 => h = 5
Find the value of SinA :
--------------------------------
since, we know sinA = p / h
sinA = 3 / 5
Find the value of SecA :
---------------------------------
secA = h / b = 5 / 4
so now put the value of sinA and secA in the Given trigonometric expression :
sin^2A - sec^2A = ( 3 / 5 )^2 - ( 5 / 4 )^2
= ( 9 / 25 ) - ( 25 / 16 )
= ( 144 - 625 ) / 400
= - 481 / 400
therefore, sin^2A - sec^2A = - 481 / 400
Answer : - 481 / 400
-------------------------------------------------------
Similar questions