Math, asked by patnaikdhirenpov932n, 1 year ago

If 3cotA=4 then find Sin²A - Sec²A

Answers

Answered by RAMAN019
10
here you go ☆☆

 \cot(a) = \frac{4}{3}
so,
given:-
◇base = 4
◇perpendicular = 3

to find :-
◇h = ?
◇Sin²A - Sec²A

using Pythagoras theorem

 {h }^{2} = {b}^{2} + {p}^{2}
 {h}^{2} = 16 + 9 = 25
h = \sqrt{25} = > 5

□sin A = 3/5

□sec A =5/4

 { \sin }^{2} - { \sec }^{2}

 { \frac{3}{5} }^{2} - { \frac{5}{4} }^{2}

 \frac{9}{25} - \frac{25}{16}

 \frac{ 144 - 625}{400}

 - \frac{481}{400}

1.20

hope it helps:)

patnaikdhirenpov932n: tq
RAMAN019: :)
Answered by TheLostMonk
12
let b = base , p = perpendicular and
h = hypotenuse

3cotA = 4 => cotA = 4 / 3 = b/ p

solve for ' h' :
------------------
by Pythagoras theorem, we get

h^2 = ( b)^2 + ( p )^2

h^2 = ( 4 )^2 + ( 3 )^2

h^2 = 16 + 9 = 25

h = √25 => h = 5

Find the value of SinA :
--------------------------------

since, we know sinA = p / h

sinA = 3 / 5

Find the value of SecA :
---------------------------------

secA = h / b = 5 / 4

so now put the value of sinA and secA in the Given trigonometric expression :

sin^2A - sec^2A = ( 3 / 5 )^2 - ( 5 / 4 )^2

= ( 9 / 25 ) - ( 25 / 16 )

= ( 144 - 625 ) / 400

= - 481 / 400

therefore, sin^2A - sec^2A = - 481 / 400

Answer : - 481 / 400

-------------------------------------------------------
Similar questions