Math, asked by gopalkgp3368, 10 months ago

If 3sinθ - 4cosθ = 0 , then the value of 3sinθ + 4cosθ is

Answers

Answered by nishant1234567890000
0

Answer:

3sinθ-4cosθ=0

3sinθ=4cosθ

sinθ/cosθ=4/3

tanθ=4/3

and 3sinθ+4cosθ

divide 3sinθ+4cosθ by cosθ

we get

3sinθ/cosθ  + 4cosθ/cosθ

=3tanθ + 4

=3×4/3  +4

=4+4

=8

hence the correct answer is 8

please mark my answer as brainlist

Step-by-step explanation:

Answered by MrSarcastic01
0

Answer:

༒ Question ➽

If θ is Acute angle and 3sinθ = 4cosθ then Find out the value of 4sin2θ - 3cos2θ + 2.

___________________________

༒ Given ➽

 \large \sf3sin \theta = 4cos\theta

___________________________

༒ To Find ➽

 \sf \large 4sin2\theta - 3cos2\theta + 2

___________________________

༒ Solution ➽

As

 \sf3sin\theta = 4cos\theta \\  \\  \implies \sf \dfrac{sin\theta }{cos \theta }  =   \frac{4}{3}  \\  \\  \implies \large \boxed{ \bf tan\theta =  \frac{4}{3} }

So,

 \sf {tan}^{2} \theta =  \frac{16}{9}  \\  \\  \sf \implies {sec}^{2} \theta = 1 +  \frac{16}{9}  \\  \: \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \{  \because\bf  {sec}^{2} \theta = 1 + tan {}^{2} \theta \} \\  \\  =  \sf \frac{25}{9}  \\  \\  \implies \sf sec \theta  =  \pm \frac{5}{3}  \\  \ \bf  \{but \: sec\theta \ne  - ve \} \:  \: ( \because \theta \: is \: acute) \\  \\  \therefore  \bf sec\theta =  \frac{5}{3}

Hence,

 \purple{   \large \underline{ \boxed{\bf cos\theta =  \dfrac{3}{5}}}} \\  \:  \:  \:  \: \:  \:  \:  \{  \bf\because cos\theta =  \frac{1}{sec \theta }  \}

So,

 \sf sin\theta =  \sqrt{1 -  {cos}^{2} \theta }  \\  \\  \sf =  \sqrt{1 -  \frac{9}{25} }  \\  \\  =  \sf  \sqrt{ \frac{16}{25} }  \\  \\  \sf =   \pm\frac{4}{5}

As θ is Acute so sinθ will not negative

Hence,

 \large \purple{ \bf \underline{ \boxed{ \bf sin \theta =  \frac{4}{5}  }}}

Now,

 \sf4sin2\theta - 3cos2\theta + 2 \\  \\  =  \sf 4(2sin\theta cos\theta) - 3(2 {cos}^{2} \theta - 1) + 2 \\  \\  \sf = 8 \times  \frac{4}{5} \times  \frac{3}{5}  -3 \bigg\{2\bigg( \frac{3}{5} \bigg) {}^{2}  - 1 \bigg\} + 2 \\  \\  =  \sf \frac{96}{25}   +  \frac{21}{25} + 2  \\  \\ \Large \purple{\bf =  \frac{167}{25} }

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

___________________________

༒ Alernate Solution ➽

As

 \sf3sin\theta = 4cos\theta \\  \\  \implies \sf \dfrac{sin\theta }{cos \theta }  =   \frac{4}{3}  \\  \\  \implies \large \boxed{ \bf tan\theta =  \frac{4}{3} }

Squaring We get

 \bf {tan}^{2} \theta =  \frac{16}{9}

We Know

 \sf sin2 \theta =   \dfrac{2tan \theta}{1 +  {tan}^{2}  \theta}  \\  \\  \bf and \\  \\  \sf cos2 \theta =  \frac{1 -  {tan}^{2}  \theta}{1 + tan {}^{2} \theta }

Now,

 \sf4sin2\theta - 3cos2\theta + 2 \\  \\  =  \sf4 \bigg(  \frac{2tan\theta}{1 + tan {}^{2} \theta }  \bigg) - 3 \bigg(  \frac{1 -  {tan}^{2}  \theta}{1 + tan {}^{2} \theta }  \bigg) + 2 \\  \\  \sf = 4 \bigg( \frac{2( \frac{4}{3}) }{1 +  \frac{16}{9} }  \bigg) - 3 \bigg( \frac{1 -  \frac{16}{9} }{1 +  \frac{16}{9} }  \bigg) + 2 \\  \\  \sf = 4 \bigg( \dfrac{ 8/3 }{ 25 /9 }  \bigg) - 3 \bigg(  \frac{ - 7 /9 }{ 25 /9 }  \bigg) + 2 \\  \\  \sf = 4 \bigg( \frac{24}{5}  \bigg)  + 3 \bigg( \frac{7}{25}  \bigg)  + 2 \\  \\  \sf =  \frac{96}{25}  +  \frac{21}{25}  + 2  \\  \\  \Large \bf \purple{ \bf =  \frac{167}{25} }

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

___________________________

Similar questions