Math, asked by rimo98, 1 year ago

if 3sin (theta) +4 cos (theta) =5 then find the value of 3 cos (theta) - 4 sin (theta)

Answers

Answered by Anku11111111
16
i think this is the answer

plzz mark as the brainliest if it is correct
Attachments:

sukicivil0211: It should be 9cos(theta)+16cos(theta)divided by 3
Anku11111111: no i have checked nd thats correct
Answered by sharonr
0

The value of 3 \cos \theta-4 \sin \theta=0

Solution:

Given that:

3 \sin \theta+4 \cos \theta=5

To find : 3 \cos \theta-4 \sin \theta

Let us use the given information and solve

3 \sin \theta+4 \cos \theta=5

On dividing the complete equation by 5 we get,

\frac{3}{5} \sin \theta+\frac{4}{5} \cos \theta=1  ------ eqn 1

Comparing with the known identity:

\sin x \cos y+\cos x \sin y=\sin (x+y)  ---- eqn 2

On comparing (1) and (2), we get

\cos y=\frac{3}{5} \text { and } \sin y=\frac{4}{5} \text { and } x=\theta \text { and } \sin (x+y)=1

y=\sin ^{-1} \frac{4}{5}=53.13=53

So, sin(x + y ) = 1

Substitute x = θ and y = 53

\begin{array}{l}{\sin \left(53^{\circ}+\theta\right)=1} \\\\ {53^{\circ}+\theta=\sin ^{-1}(1)}\end{array}

\text { since } \sin 90^{\circ}=1, \text { hence } \sin ^{-1}(1)=90^{\circ}

\begin{array}{l}{\text {Therefore } 53^{\circ}+\theta=90^{\circ}} \\\\ {\theta=90-53=37^{\circ}}\end{array}

Now, the value of:

\begin{array}{l}{3 \cos \theta-4 \sin \theta=-3 \times \cos \left(37^{\circ}\right)-4 \times \sin \left(37^{\circ}\right)} \\\\ {=3 \times \frac{4}{5}-4 \times \frac{3}{5}=0}\end{array}

Thus the value of 3 \cos \theta-4 \sin \theta=0

Learn more about trignometric identities

Cot theta + cosec theta-1/ cot theta-cosec theta+1= 1+cos theta/sin theta. Prove this

https://brainly.in/question/2552959

Prove that (tan theta/1-cot theta) + cot theta/1-tan theta= 1 + sec theta*cosec theta

https://brainly.in/question/2552959

Similar questions