if √3sin theta-cos theta=0 then prove that tan 2 theta =2 tan theta/1-tan ^theta
Answers
Answer:
IVU, Find the LCM of the following set of the numbers by the common division method. b) 25, 45, 30
Step-by-step explanation:
given
√3sin theta-cos theta=0
to prove
tan 2 theta =2 tan theta/1-tan ^theta
Tan 2theta = sin 2theta / Cos 2theta
Tan 2theta =Sin 2theta ÷ cos 2theta
Tan 2theta =Sin 2theta ÷ 1 - Tan^2 theta / 1 + Tan^2 theta
we know that.
Sin 2theta = 2 Tan theta / 1 + tan^2 theta
Cis 2theta = 1 - Tan^2 theta / 1 + Tan^2 theta
now
Tan 2theta = ( 2 Tan theta / 1 + tan^2 theta ) ÷ ( 1 - Tan^2 theta / 1 + Tan^2 theta )
= 2 Tan theta / 1 - Tan^2 theta.
hence proved
additional
√3 Sin theta - cos theta =0
√3 sin theta = cos theta
sin theta = ( 1/ √3 ) cos theta
√3 Tan theta = 1
Tan theta = 1/√3
theta = 30°