Math, asked by SamyekShakya, 11 months ago

if 3sinA+4cosA=5 then prove tanA=3/4

Answers

Answered by karan7763030051
1

Answer:

3 sinA+4cosA=5

3sinA+1/4sin A=5

(12sinA²+1)

Answered by Anonymous
116

AnswEr :

\bold{Condition} \begin{cases} \sf{Given : 3 \sin(A) + 4 \cos(A)} \\ \sf{To \: Prove :  \tan(A)= \dfrac{3}{4} }\end{cases}

Proof :

\longrightarrow  \rm 3 \sin(A) + 4 \cos(A)  = 5

⠀⠀⠀⠀⋆ Dividing Each term by cos (A)

\longrightarrow  \rm  \dfrac{3 \sin(A)}{\cos(A)} +  \dfrac{4  \cancel{\cos(A)}}{ \cancel{\cos(A)}}  =  \dfrac{5}{\cos(A)}

⠀⠀⠀⠀⋆ sin (A) / cos (A) = tan (A)

⠀⠀⠀⠀⋆ 1 / cos (A) = sec (A)

\longrightarrow  \rm 3 \tan(A) + 4 = 5 \sec(A)

⠀⠀⠀⠀⋆ squaring both sides

\longrightarrow  \rm (3 \tan(A) + 4) ^{2}  = (5 \sec(A) )^{2}

⠀⠀⠀⠀⋆ (a + b)² = a² + b² + 2ab

\longrightarrow \small\rm (3 \tan(A))^{2}  + (4) ^{2}   + 2 \times 3 \tan(A) \times 4= (5 \sec(A) )^{2}

\longrightarrow  \rm 9 \tan^{2}(A)  + 16  + 24\tan(A)= 25 \sec^{2}(A)

⠀⠀⠀⠀⋆ sec² (A) = 1 + tan² (A)

\longrightarrow  \rm 9 \tan^{2}(A)  + 16  + 24\tan(A)= 25 (1 +  \tan^{2}(A))

\longrightarrow  \rm 9 \tan^{2}(A)  + 16  + 24\tan(A)= 25+  25\tan^{2}(A)

\longrightarrow  \rm 0= 25+  25\tan^{2}(A) - 9 \tan^{2}(A)  - 16   -  24\tan(A)

\longrightarrow  \rm 16\tan^{2}(A) -  24\tan(A)  + 9 = 0

\longrightarrow  \rm (4\tan(A))^{2} -  2 \times 4\tan(A)  \times 3-  {(3)}^{2}  = 0

⠀⠀⠀⠀⋆ a² + b² - 2ab = (a - b)²

\longrightarrow  \rm (4\tan(A) - 3)^{2} = 0

\longrightarrow  \rm 4\tan(A) - 3 = 0

\longrightarrow  \rm 4\tan(A) = 3

\longrightarrow  \rm  \boxed{\tan(A) = \dfrac{3}{4} }

Similar questions