If√3sinA-cosA=o, then show that 3A=3tanA-tan^3/1-3tan^2A
Answers
Answered by
6
Answer:
√3 sinΦ - cosΦ = 0
To prove : tan 3Φ = (3tanΦ - tan³Φ)/(1 - 3tan²Φ)
Now,
√3 sinΦ - cosΦ = 0
=> √3 sinΦ = cosΦ
Dividing cosΦ both sides :
=> √3 tanΦ = 1
=> tanΦ = 1/√3
=> tanΦ = tan30°
=> Φ = 30°
Here,
tan 3Φ = (3tanΦ - tan³Φ)/(1 - 3tan²Φ)
tan 3 × 30° = {3 × 1/3√3 - (1/√3)³} /{1 - 3 × (1/√3)²}
tan 90° = {√3 - 1/3√3}/{1 - 3 × 1/3}
∞ = {√3 - 1/3√3}/{1 - 1}
∞ = {√3 - 1/3√3}/0
∞ = ∞
Hence, proved
Answered by
0
Answer:
If√3sinA-cosA=o, then show that 3A=3tanA-tan^3/1-3tan^2A
Similar questions
Math,
6 months ago
Social Sciences,
6 months ago
Science,
6 months ago
Physics,
1 year ago
Math,
1 year ago
English,
1 year ago
History,
1 year ago
Accountancy,
1 year ago