Math, asked by jindalbhavesh, 1 year ago

If_/3tan theta = 1 then find the value of sin 2 theta - cos 2theta.

Answers

Answered by abhi178
74
root3 tan theta=1
tan theta=1/root3
theta=30degree
now
sin2theta -cos2theta
=sin (2x30)-cos (2x30)
=sin60-cos60=root3/2-1/2=(root3-1)/2
Answered by mysticd
44

Answer:

\red {Value \: of \: sin^{2}\theta - cos^{2}\theta }\green {= \frac{ \sqrt{3}-1}{2}}

Step-by-step explanation:

 Given \: \sqrt{3} tan\theta = 1

\implies tan \theta = \frac{1}{\sqrt{3}}\:---(1)

\implies tan\theta = tan 30\degee

\implies \theta = 30\degree

\red {Value \: of \: sin2\theta - cos2\theta }

 = sin 2\times 30 - cos 2\times 30 \\= sin 60 - cos 60\\= \frac{\sqrt{3}}{2} - \frac{1}{2}\\= \frac{ \sqrt{3}-1}{2}

Therefore.,

\red {Value \: of \: sin2\theta - cos2\theta }

\green {= \frac{ \sqrt{3}-1}{2}}

•••♪

Similar questions