Math, asked by devarajn8663, 9 months ago

If 3tanA=1 prove that 3sinA=cosA​

Answers

Answered by Anonymous
6

\huge{\underline{\sf{Solution:-}}}

1 + Sin²A = 3SinA Cos A

Cos²A + Sin²A + Sin²A = 3SinA CosA [ 1 = Sin² +bCos A]

Cos²A + 2Sin²A = 3SinA CosA → (1)

Divide eq (1) by cos²A we get,

1 + 2Tan²A = 3 TanA

1 + 2Tan²A - 3 TanA = 0

(2TanA - 1) ( TanA - 1) = 0

2TanA - 1 = 0 × TanA - 1 = 0

2TanA = 1 × TanA = 1

TanA = 1/2 × TanA = 1

_______________________________________________________________________

Answered by Anonymous
2

Step-by-step explanation:

3tan(a) = 1 \\ 3 \times  \sin(a)  \div  \cos(a)  = 1 \\ 3 \sin(a)  =  \cos(a)  \\  \\  \:  \:  \:  \:  \:  \:  \: hence \: proved

I hope it is helpful for u

Similar questions