If 3tanA=1 prove that 3sinA=cosA
Answers
Answered by
6
1 + Sin²A = 3SinA Cos A
Cos²A + Sin²A + Sin²A = 3SinA CosA [ 1 = Sin² +bCos A]
Cos²A + 2Sin²A = 3SinA CosA → (1)
Divide eq (1) by cos²A we get,
1 + 2Tan²A = 3 TanA
1 + 2Tan²A - 3 TanA = 0
(2TanA - 1) ( TanA - 1) = 0
2TanA - 1 = 0 × TanA - 1 = 0
2TanA = 1 × TanA = 1
TanA = 1/2 × TanA = 1
_______________________________________________________________________
Answered by
2
Step-by-step explanation:
I hope it is helpful for u
Similar questions