if 3tanAtanB=1 THEN Prove that cos(A-B)/cos(A+B)
Answers
Answered by
22
The answer is given below :
We know that,
cos(A - B) = cosA cosB + sinA sinB
cos(A + B) = cosA cosB - sinA sinB
Given that,
3 tanA tanB = 1
or, tanA tanB = 1/3
Now,
L.H.S. = cos(A - B)/cos(A + B)
= (cosA cosB + sinA sinB)/(cosA cosB - sinA sinB)
= (1 + tanA tanB)/(1 - tanA tanB),
dividing both the numerator and denominator by (cosA cosB), since sinA/cosA = tanA
= (1 + 1/3)/(1 - 1/3)
= (4/3)/(2/3)
= 4/2
= 2
= R.H.S. [Proved]
I hope it helps you.
We know that,
cos(A - B) = cosA cosB + sinA sinB
cos(A + B) = cosA cosB - sinA sinB
Given that,
3 tanA tanB = 1
or, tanA tanB = 1/3
Now,
L.H.S. = cos(A - B)/cos(A + B)
= (cosA cosB + sinA sinB)/(cosA cosB - sinA sinB)
= (1 + tanA tanB)/(1 - tanA tanB),
dividing both the numerator and denominator by (cosA cosB), since sinA/cosA = tanA
= (1 + 1/3)/(1 - 1/3)
= (4/3)/(2/3)
= 4/2
= 2
= R.H.S. [Proved]
I hope it helps you.
5932:
thanks
Similar questions