Math, asked by drona45, 1 year ago

if 3tantheta =4, find the value of 4costheta - sin theta /2costheta + sin theta

Answers

Answered by Anonymous
0

 \bf \LARGE \it Hey  \: User!!!

given :-

3tan∅ = 4

therefore tan∅ = 4/3

consider any right angle triangle abc.

we know that tan∅ = perpendicular/base

▶BC = perpendicular = 4
▶AC = base = 3
▶AB = hypotenuse = ?

by Pythagoras theorem we get :-

>> AB = √(BC² + AC²)
>> AB = √(4² + 3²)
>> AB = √(16 + 9)
>> AB = √25
>> AB = 5

hence, the hypotenuse is 5.

now,

we know that sin∅ = perpendicular/hypotenuse and cos∅ = base/hypotenuse

▶sin∅ = 4/5
▶cos∅ = 3/5

 \rm =  >   \frac{4 \cos \theta -  \sin \theta}{2 \cos \theta  +  \sin \theta}  \\ \\  \rm =  >  \frac{(4 \times  \frac{3}{5} ) -  \frac{4}{5} }{(2 \times  \frac{3}{5}) +  \frac{4}{5}  }  \\  \\  \rm  \large =  >  \frac{ \frac{12}{5}  -  \frac{4}{5} }{ \frac{6}{5}  +  \frac{4}{5} }  \\  \\  \rm  \large=  >   \frac{ \frac{8}{5} }{ \frac{10}{5} }   \\  \\  \rm =  >   \frac{ \cancel8 }{ \cancel5}  \times  \frac{ \cancel5  }{ \cancel10  } \\  \\ \rm  =  >  \boxed{ \frac{4}{5} }  \: final \: answer : )



 \bf \LARGE \it Cheers!!!
Attachments:
Similar questions