Math, asked by anilshivhare08, 10 months ago

if 3x-1/3x=27 then (x-1/x)^3​

Answers

Answered by sanjeevk28012
1

Given :

The linear equation as

3 x - \dfrac{1}{3x} = 27

To Find :

The value of ( x - \dfrac{1}{x}

Solution :

According to question

∵    3 x - \dfrac{1}{3x}  = 27

Or, taking LCM

  \dfrac{9x^{2} -1}{3x} = 27

Or, 9 x² - 1 = 27 × 3 x

Or,   9 x² - 81 x - 1 = 0

Solving this quadratic equation

x = \dfrac{81\pm \sqrt{(-81)^{2}-4\times 9\times (-1)}}{2 \times 9}

So,  x = 9

The value of  \dfrac{1}{x} = \dfrac{1}{9}

Now,

( x - \dfrac{1}{x} )³  =  ( 9 - \dfrac{1}{9} ) ³

              = ( \dfrac{81-1}{9} ) ³

              =  ( \dfrac{80}{9} ) ³

              = ( 8.89 )³

∴  ( x - \dfrac{1}{x} )³  = = 702.5

Hence, The value of given expression ( x - \dfrac{1}{x} )³  is 702.5   Answer

Similar questions