Math, asked by Ayushi5866, 1 year ago

If (3x-1)^4=a4x^4+a3x^3+a2x^2+a1x0+a0,find the value of a4+3a3+9a2+27a1+81a0

Answers

Answered by rowboatontario
13

The value of a_4+3a_3+9a_2+27a_1+81a_0 is 0.

Step-by-step explanation:

We are given with the following situation below;

If (3x-1)^{4}=a_4x^{4}+a_3x^{3}  +a_2x^{2} +a_1x+a_0 , then we have to find the value of a_4+3a_3+9a_2+27a_1+81a_0.

Firstly, taking the left-hand side of the equation;

(3x-1)^{4} =  (3x-1)^{2} \times (3x-1)^{2}

Now, as we know that (a-b)^{2} = a^{2} +b^{2} -2ab, so using this we get;

              =  ((3x)^{2} +1^{2} - 2(3x)(1)) \times ((3x)^{2} +1^{2} - 2(3x)(1))

              =  (9x^{2}  +1 - 6x) \times (9x^{2}  +1 - 6x)

              =  81x^{4}+9x^{2}  - 54x^{3} +9x^{2} +1-6x-54x^{3} -6x+36x^{2}

              =  81x^{4}  - 108x^{3} +54x^{2} -12x+1

Now, comparing the result with the expression a_4x^{4}+a_3x^{3}  +a_2x^{2} +a_1x+a_0, we get;

a_4 = 81, a_3 = -108, a_2 = 54, a_1 = 12, and a_0 = 1.

So, the value of a_4+3a_3+9a_2+27a_1+81a_0 is given by;

      =  81+3\times (-108)+9\times 54+27\times (-12)+81\times 1

      =  81 - 324 + 486 - 324 + 81

      =  648 - 648 = 0

Hence, the value of a_4+3a_3+9a_2+27a_1+81a_0 is 0.

Answered by Tagoreharivardhan
2

Answer:

hey mate here is your barinlist answer

Step-by-step explanation:

pls mark me as brainliest

Attachments:
Similar questions