Math, asked by Bablu991, 6 months ago

If 3x + 2y =15 and xy = 8 find the value of 9xpower2+ 4ypower2​

Answers

Answered by Anonymous
2

\huge\boxed{\fcolorbox{black}{pink}{Answer}}</p><p>

\small\bold{\underline{\sf{\purple{Given:-}}}}

if 3x + 2y = 15 and xy = 8

\small\bold{\underline{\sf{\red{To\:Find:-}}}}

The value of 9x² + 4y²

\small\bold{\underline{\sf{\pink{Formula\:used:-}}}}

(x + y)² = x² + y² +2xy

Now,

→ 3x + 2y = 15

Squaring the both sides.

→ (3x + 2y)² = 3x² + 2y² + 2 × 3x × 2y

→ (15)² = 9x² + 4y² + 12xy

→ 225 = 9x² + 4y² + 12× 8

→ 225 = 9x² + 4y² + 96

→ 225 - 96 = 9x² + 4y²

→ 129 = 9x² + 4y².

✅✅Hence, The value of 9x² + 4y² is 129.

Answered by Anonymous
6

Step-by-step explanation:

Given:-

if 3x + 2y = 15 and xy = 8

To Find:-

The value of 9x² + 4y²

FORMULAE USED:-

(x + y)² = x² + y² +2xy

Now,

→ 3x + 2y = 15

Squaring the both sides.

→ (3x + 2y)² = 3x² + 2y² + 2 × 3x × 2y

→ (15)² = 9x² + 4y² + 12xy

→ 225 = 9x² + 4y² + 12× 8

→ 225 = 9x² + 4y² + 96

→ 225 - 96 = 9x² + 4y²

→ 129 = 9x² + 4y².

Hence, The value of 9x² + 4y² is 129.

MORE IDENTITIES

(a - b)² = a² - 2ab + b²

a³ + b³ = (a + b ) (a² - ab + b²)

a³ - b³ = (a - b ) (a² + ab + b²).

Similar questions