If 3x + 4y = 18 and xy =6, find the value of 9x + 16y.
Answers
Answered by
20
3x+4y = 18
squaring on both sides
(3x+4y)^2= (18)^2
(3x)^2+(4y)^2+ 2(3x)(4y) = 324
9x^2+ 16y^2+ 24xy = 324
now put xy = 6
9x^2+ 16y^2+24(6)= 324
9x^2+16y^2 + 144= 324
9x^2+ 16 y^2 = 324-144
9x^2+ 16y^2 = 180 ans
squaring on both sides
(3x+4y)^2= (18)^2
(3x)^2+(4y)^2+ 2(3x)(4y) = 324
9x^2+ 16y^2+ 24xy = 324
now put xy = 6
9x^2+ 16y^2+24(6)= 324
9x^2+16y^2 + 144= 324
9x^2+ 16 y^2 = 324-144
9x^2+ 16y^2 = 180 ans
Answered by
0
Answer:
180
Step-by-step explanation:
We have,
3
x
+
4
y
=
18
on Squaring on both sides, we get
⇒
(
3
x
+
4
y
)
2
=
324
⇒
(
3
x
)
2
+
(
4
y
)
2
+
24
x
y
=
324
We have,
x
y
=
6
⇒
9
x
2
+
16
y
2
+
24
×
6
=
324
⇒
9
x
2
+
16
y
2
+
144
=
324
∴
9
x
2
+
16
y
2
=
180
Similar questions