If 3x+4y+z=5 find min value of 26(x^2+y^+z^2)
Answers
Answer:
Step-by-step explanation:
Let the product P = xy
Since 3x + 4y = 12, y =3−3x4
P = x∗y =3x−34x2
For P to be maximum,dPdx=0
⇒ 3−32x=0 or x=2
Also, d2Pdx2=−32<0, so x =2 is a point of maxima.
When x =2, y = 3−342 =32
Maximum value of P = xy is = 2∗32 =3
markme has branilist if it help u
Answer: Minimum value is 25.
Step-by-step explanation:
Minimize : 26 (x² + y² + z²)
Constrain : 3x + 4y + z = 5
Lagrangian function ⇒ L : 26(x² + y² + z²) - λ(3x + 4y + z - 5)
At extrema dL/dx = dL/dy = dL/dz = dL/dλ = 0
= 52x - 3λ
0 = 52x - 3λ
x = 3λ/52
= 52y - 4λ
0 = 52y - 4λ
y = 4λ/52
= 52z - λ
0 = 52z - λ
z = λ/52
dL/dλ = -3x -4y -z + 5
0 = -9λ/52 -16λ/52 -λ/52 + 5
26λ/52 = 5
λ = 10
x = 3λ/52 =
y = 4λ/52 =
z = λ/52 =
26(x² + y² + z²) =
26(x² + y² + z²) =
26(x² + y² + z²) = 25
#SPJ2