Math, asked by soma4641, 1 year ago

[If 3x -5y+k 0 is a median of the triangle ABC whose vertices are A(-1,3), B(0, 4) C(-5, 2) then the value of k is]

Answers

Answered by MaheswariS
2

Solution:


Concept used:

The centroid of a triangle having vertices

({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3}) is

(\frac{{x_1}+{x_2}+{x_3}}{3},\frac{{y_1}+{y_2}+{y_3}}{3})


Given:

The vertice of triangle are A(-1,3), B(0, 4) C(-5, 2)


The centroid of triangle ABC is

(\frac{{x_1}+{x_2}+{x_3}}{3},\frac{{y_1}+{y_2}+{y_3}}{3})

(\frac{-1+0-5}{3},\frac{3+4+2}{3})\\\\(\frac{-6}{3},\frac{9}{3})

(-2,3)


since the median 3x -5y+k=0 passes through (-2,3),

3(-2)-5(3)+k=0

-6-15+k=0

k=21

Similar questions