Math, asked by biswamber, 1 year ago

if 3x=cosecA &3/x=cotA then find 3[x (square )-1/x(square )]

Answers

Answered by Sanchari98
59
3x = cosecA. 3/x = cotA
x = cosecA/3 x = 3/cotA
x² = cosec²A/9 1/x = cotA/3
1/x² = cot²A/9
3[x²-1/x²]= 3[cosec²A/9 - cot²A/9]
=3/9 (cosec²A-cot²A)
= 1/3
Answered by smithasijotsl
0

Answer:

The value of 3( x² -\frac{1}{x^2} ) =  \frac{1}{3}

Step-by-step explanation:

Given,

cosec A = 3x

cot A = \frac{3}{x}

To find

The value of 3(x^2 - \frac{1}{x^2} )

Solution:

Recall the concept

Cosec²θ - cot²θ = 1

We have,

Since cosec A = 3x,

we have x = \frac{1}{3} cosecA

squaring on both sides,

x² =  \frac{1}{9}cosec²A -------------(1)

Also, cot A = \frac{3}{x}

\frac{1}{x} = \frac{1}{3}cotA

Squaring on both sides

\frac{1}{x^2} = \frac{1}{9} \ cot^2A --------------------(2)

Subtracting equation (2) from (1) we get

(1) - (2) →,

x² -\frac{1}{x^2}  =   \frac{1}{9} cosec²A - \frac{1}{9} cot ²A

= \frac{1}{9} (cosec²A - cot²A )

= \frac{1}{9} (∵ By using the identity cosec²A - cot²A  = 1)

3( x² -\frac{1}{x^2}  ) = 3× \frac{1}{9} =  \frac{1}{3}

The value of 3( x² -\frac{1}{x^2} ) =  \frac{1}{3}

#SPJ3

Similar questions