if 3x=cosecA &3/x=cotA then find 3[x (square )-1/x(square )]
Answers
Answered by
59
3x = cosecA. 3/x = cotA
x = cosecA/3 x = 3/cotA
x² = cosec²A/9 1/x = cotA/3
1/x² = cot²A/9
3[x²-1/x²]= 3[cosec²A/9 - cot²A/9]
=3/9 (cosec²A-cot²A)
= 1/3
x = cosecA/3 x = 3/cotA
x² = cosec²A/9 1/x = cotA/3
1/x² = cot²A/9
3[x²-1/x²]= 3[cosec²A/9 - cot²A/9]
=3/9 (cosec²A-cot²A)
= 1/3
Answered by
0
Answer:
The value of 3( x² - ) =
Step-by-step explanation:
Given,
cosec A = 3x
cot A =
To find
The value of
Solution:
Recall the concept
Cosec²θ - cot²θ = 1
We have,
Since cosec A = 3x,
we have x = cosecA
squaring on both sides,
x² = cosec²A -------------(1)
Also, cot A =
=
Squaring on both sides
= --------------------(2)
Subtracting equation (2) from (1) we get
(1) - (2) →,
x² - = cosec²A - cot ²A
= (cosec²A - cot²A )
= (∵ By using the identity cosec²A - cot²A = 1)
3( x² - ) = 3× =
The value of 3( x² - ) =
#SPJ3
Similar questions