Math, asked by melisajesus, 1 year ago

if (-4, 0 )and (4, 0 )are two vertices of an equilateral triangle find the coordinates of its third vertex


melisajesus: എന്റെ രണ്ടാമത്തെ ചോദ്യത്തിന് ഉത്തരം തരാവോ
melisajesus: 10th
melisajesus: U?
melisajesus: Ho kashttam
melisajesus: Bye
melisajesus: Nan padikatte

Answers

Answered by shamimashraf2004
2
(0, 4)....
hope it will help you....

shamimashraf2004: or Kerala board?
melisajesus: Yea
melisajesus: Cbsc
melisajesus: Cbse
melisajesus: U?
shamimashraf2004: me too
melisajesus: K bye
shamimashraf2004: bye...
melisajesus: Kerala
Answered by SerenaBochenek
4

Answer:

The third vertex is (0,\pm4\sqrt3)

Step-by-step explanation:

Given if B(-4,0) and C(4,0) are two vertices of an equilateral triangle. we have to find the coordinates of its third vertex.

Let A(x,y) be the coordinate of its third vertex.

Using distance formula,

\text{if }(x_1,y_1) \text{and }(x_2,y_2) \text{are the two coordinate points then distance between these two }

Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

BC =\sqrt{(4-(4))^2+(0-0)^2}=\sqrt{64+0}= 8

AB = \sqrt{(-4-x)^2 + (0-y)^2}

AC =\sqrt{(4-x)^2 + (0-y)^2}

Given that the triangle is equilateral. So, AB=BC= AC

AB=AC

\sqrt{(-4-x)^2+ (0-y)^2} =\sqrt{ (4-x)^2+ (0-y)^2}

(-4-x)^2+ (0-y)^2 = (4-x)^2+ (0-y)^2

(-4-x)^2= (4-x)^2

x^2+8x+16= x^2-8x+16

16x=0 ⇒ x=0

Again, AC = BC

\sqrt{(4-x)^2+ (0-y)^2} = 8

Squaring on both sides, we get

(4-x)^2+ (0-y)^2= 64

(4-0)^2+ (0-y)^2= 64

4^2 + y^2 = 64

y^2 = 64-16=48

y = \pm4\sqrt3

Hence, the third vertex is (0,\pm4\sqrt3)

Similar questions