Math, asked by schandrakar, 1 year ago

if {(4)^2x-1)} -{(16)^x-1}=384 then find the value of x

Answers

Answered by ishwarsinghdhaliwal
25

{4}^{2x - 1}  -  {16}^{x - 1}  = 384\\{4}^{2x - 1}  - {4}^{2x - 2}  = 384 \\  \frac{ {4}^{2x} }{ {4}^{1}  }  -  \frac{ {4}^{2x} }{ {4}^{2} }  = 384 \\  {4}^{2x} ( \frac{1}{4}  -  \frac{1}{16} ) = 384 \\ 4 ^{2x} ( \frac{4 - 1}{16} ) = 384 \\  {4}^{2x} ( \frac{3}{16} ) = 384 \\  {4}^{2x}  = 384 \times  \frac{16}{3}  \\  {4}^{2x}  = 128 \times 16 \\  {4}^{2x}  = 64 \times 2 \times 16 \\  {4}^{2x}  =  {4}^{3}  \times  {4}^{ \frac{1}{2} }  \times  {4}^{2}  \\  {4}^{2x}  = 4 ^{3 +  \frac{1}{2}  + 2}  \\ 4 ^{2x}  = 4  ^{ \frac{6 + 1 + 4}{2} }  \\  {4}^{2x}  = 4 ^{ \frac{11}{2} }  \\ 2x =  \frac{11}{2}  \\ x =  \frac{11}{2}  \times  \frac{1}{2}   \\ x =  \frac{11}{4}
Similar questions