Math, asked by joya57, 8 months ago

If √4 + √3/2√4 -√3 = a - b √12 then find a and b​

Answers

Answered by shubhipathania010
1

Answer:

234-6568

&+753589

Step-by-step explanation:

please follow me

Answered by Anonymous
14

\sf\large\underline\blue{Given:-}

  \\  \:  \: { \huge{.}} \:  \: { \bold{ \dfrac{ \sqrt{4}  +  \sqrt{3} }{2 \sqrt{4}  -  \sqrt{3} } = a - b \sqrt{12}  }} \\

\sf\large\underline\blue{To\: Find:-}

• Value of a and b

\sf\large\underline\blue{Formula\: used:-}

  \\  \:  \:  \twoheadrightarrow \:  { \bold{ (a + b)(a - b)  = {a}^{2} -  {b}^{2} }} \\

\sf\large\underline\blue{Solution:-}

Given that,

  ↦{ \bold{ \dfrac{ \sqrt{4}  +  \sqrt{3} }{2 \sqrt{4}  -  \sqrt{3} } = a - b \sqrt{12}  }} \\

( Rationalization of denominator )

 ↦{ \bold{ \dfrac{ \sqrt{4}  +  \sqrt{3} }{2 \sqrt{4}  -  \sqrt{3} }  \times  \dfrac{2 \sqrt{4} +  \sqrt{3}  }{2 \sqrt{4}  +  \sqrt{3} } = a - b \sqrt{12}  }} \\

↦ { \bold{ \dfrac{( \sqrt{4}  +  \sqrt{3})(2 \sqrt{4} +  \sqrt{3})}{(2 \sqrt{4}  -  \sqrt{3})(2 \sqrt{4} +  \sqrt{3})}  = a - b \sqrt{12}  }} \\

 ↦{ \bold{ \dfrac{( \sqrt{4}  +  \sqrt{3})(2 \sqrt{4} +  \sqrt{3})}{(2 \sqrt{4})^{2}  - ( \sqrt{3})^{2} }  = a - b \sqrt{12}  }} \\

 ↦{ \bold{ \dfrac{ \{2 {( \sqrt{4} )}^{2} +  \sqrt{4}  \sqrt{3}  +  2\sqrt{3} \sqrt{4}  + {( \sqrt{3}) }^{2} \}}{(2 \sqrt{4})^{2}  - ( \sqrt{3})^{2} }  = a - b \sqrt{12}  }} \\

  ↦{ \bold{ \dfrac{ \{8 +  \sqrt{12}+  2\sqrt{12}+3 \}}{16 - 3}  = a - b \sqrt{12}  }} \\

 ↦ { \bold{ \dfrac{11 + 3\sqrt{12}}{13}  = a - b \sqrt{12}  }} \\

↦  { \bold{ \dfrac{11}{13} +  \dfrac{3\sqrt{12}}{13}  = a - b \sqrt{12}  }} \\

After comparing, we get

\boxed{ ↦a = \frac{11}{13}} \\  \\ \boxed{ ↦b = - \frac{3}{13}}</p><p>

Similar questions