Math, asked by nivi2000, 1 year ago


If (-4, 3) and (4, 3) are two vertices of an equilateral triangle, find the coordinates of
the third vertex, given that the origin lies in the interior of the triangle.

Answers

Answered by cherry143
35

let the given vertices are A(-4,3) and B(4,3)
since y-axis is perpendicular bisector of AB,therefore point C lies on the y-axis.
Let the coordinates of C(0,y)

AB^2=(-4-4)^2+(3-3)^2
AB^2=8^2=64
SINCE ABC is an equilateral triangle

AC^2=AB^2=BC^2
SINCE
 AC^2=AB^2
(0+4)^2+(y-3)^2=64
16+y^2-6y+9=64
y^2-6y-39=0

solving the quadratic eqn (1) by the formula

      6+(or)-√36+156  
                6+(or)-8√3                     
y=--------------------------------- = ----------------------------- =  3+(or)-4√3
             2                                    2
since the origin lies interior of the triangle therefore
y=3+(or)-4√3
hence the coordinates of third vertex is
(o,3+(or)-4√3)








cherry143: if u cant understand it then iam very sorry
nivi2000: I understood it. Thank you
cherry143: ur welcome
Answered by satya0007
5
Let the co-ordinate of third vertex be (x, y) 
Now Using Distance formula BC = [4 - (- 4)] 2 + (3 - 3) 2       = (4 + 4) 2 + 0 BC = 8 2= 8 Now , AB = [x - (- 4)] 2 + (y - 3) 2          AB = (x + 4) 2 + (y - 3) 2 and AC = (x - 4) 2+ (y - 3) 2 Given, ΔABC is equilateral triangle
∴ AB = AC = BC
Now, AB = AC ⇒ (x + 4) 2 + (y - 3) 2   = (x - 4) 2 + (y - 3) 2
On Squaring both sides, we get
(x + 4)2 + (y – 3)2 = (x – 4)2 + (y – 3)2
(x + 4)2 = (x – 4)2
or x 2 + 16 + 8x = x 2 + 16 – 8x
⇒ 16x = 0
x = 0  ....(1)
AC = BC implies that (x - 4) 2 + (y - 3) 2 = 8(0 - 4) 2 + (y - 3) 2 = 8                [from (1)]
On squaring both sides, we get
16 + y 2 + 9 – 6y = 64
y 2 – 6y – 39 = 0 y = -(-6) ± (- 6) 2 - 4(1)(-39) 2(1) y = 6 ± 36 + 156 2 = 6 ± 192 2 y =  6 ± 8 3 2 = 3 ± 4 3 ∴ y = 3 + 4√3 and 3 - 4√3 y ≠ 3 + 4 √3 , as origin lies in the interior of the triangle. Third vertex = (x, y) = (0, 3 - 4√3).
Attachments:
Similar questions