If (-4, 3) and (4, 3) are two vertices of an equilateral triangle, find the coordinates of
the third vertex, given that the origin lies in the interior of the triangle.
Answers
Answered by
35
let the given vertices are A(-4,3) and B(4,3)
since y-axis is perpendicular bisector of AB,therefore point C lies on the y-axis.
Let the coordinates of C(0,y)
AB^2=(-4-4)^2+(3-3)^2
AB^2=8^2=64
SINCE ABC is an equilateral triangle
AC^2=AB^2=BC^2
SINCE AC^2=AB^2
(0+4)^2+(y-3)^2=64
16+y^2-6y+9=64
y^2-6y-39=0
solving the quadratic eqn (1) by the formula
6+(or)-√36+156 6+(or)-8√3
y=--------------------------------- = ----------------------------- = 3+(or)-4√3
2 2
since the origin lies interior of the triangle therefore
y=3+(or)-4√3
hence the coordinates of third vertex is
(o,3+(or)-4√3)
cherry143:
if u cant understand it then iam very sorry
Answered by
5
Let the co-ordinate of third vertex be (x, y)
Now Using Distance formula BC = [4 - (- 4)] 2 + (3 - 3) 2 = (4 + 4) 2 + 0 BC = 8 2= 8 Now , AB = [x - (- 4)] 2 + (y - 3) 2 AB = (x + 4) 2 + (y - 3) 2 and AC = (x - 4) 2+ (y - 3) 2 Given, ΔABC is equilateral triangle
∴ AB = AC = BC
Now, AB = AC ⇒ (x + 4) 2 + (y - 3) 2 = (x - 4) 2 + (y - 3) 2
On Squaring both sides, we get
(x + 4)2 + (y – 3)2 = (x – 4)2 + (y – 3)2
(x + 4)2 = (x – 4)2
or x 2 + 16 + 8x = x 2 + 16 – 8x
⇒ 16x = 0
x = 0 ....(1)
AC = BC implies that (x - 4) 2 + (y - 3) 2 = 8(0 - 4) 2 + (y - 3) 2 = 8 [from (1)]
On squaring both sides, we get
16 + y 2 + 9 – 6y = 64
y 2 – 6y – 39 = 0 y = -(-6) ± (- 6) 2 - 4(1)(-39) 2(1) y = 6 ± 36 + 156 2 = 6 ± 192 2 y = 6 ± 8 3 2 = 3 ± 4 3 ∴ y = 3 + 4√3 and 3 - 4√3 y ≠ 3 + 4 √3 , as origin lies in the interior of the triangle. Third vertex = (x, y) = (0, 3 - 4√3).
Now Using Distance formula BC = [4 - (- 4)] 2 + (3 - 3) 2 = (4 + 4) 2 + 0 BC = 8 2= 8 Now , AB = [x - (- 4)] 2 + (y - 3) 2 AB = (x + 4) 2 + (y - 3) 2 and AC = (x - 4) 2+ (y - 3) 2 Given, ΔABC is equilateral triangle
∴ AB = AC = BC
Now, AB = AC ⇒ (x + 4) 2 + (y - 3) 2 = (x - 4) 2 + (y - 3) 2
On Squaring both sides, we get
(x + 4)2 + (y – 3)2 = (x – 4)2 + (y – 3)2
(x + 4)2 = (x – 4)2
or x 2 + 16 + 8x = x 2 + 16 – 8x
⇒ 16x = 0
x = 0 ....(1)
AC = BC implies that (x - 4) 2 + (y - 3) 2 = 8(0 - 4) 2 + (y - 3) 2 = 8 [from (1)]
On squaring both sides, we get
16 + y 2 + 9 – 6y = 64
y 2 – 6y – 39 = 0 y = -(-6) ± (- 6) 2 - 4(1)(-39) 2(1) y = 6 ± 36 + 156 2 = 6 ± 192 2 y = 6 ± 8 3 2 = 3 ± 4 3 ∴ y = 3 + 4√3 and 3 - 4√3 y ≠ 3 + 4 √3 , as origin lies in the interior of the triangle. Third vertex = (x, y) = (0, 3 - 4√3).
Attachments:
Similar questions